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ABSTRACT

NEW DIRECTIONS IN DUALITY THEORY

FOR MODAL LOGIC

BY

LUCA CARAI, B.S., M.S.

Doctor of Mathematics

New Mexico State University

Las Cruces, New Mexico, 2021

Dr. Guram Bezhanishvili, Chair

In this work we present some new contributions towards two different directions in the

study of modal logic. First we employ tense logics to provide a temporal interpretation

of intuitionistic quantifiers as “always in the future” and “sometime in the past.” This

is achieved by modifying the Gödel translation and resolves an asymmetry between the

standard interpretation of intuitionistic quantifiers.

Then we generalize the classic Gelfand-Naimark-Stone duality between compact Haus-

dorff spaces and uniformly complete bounded archimedean `-algebras to a duality encompass-

ing compact Hausdorff spaces with continuous relations. This leads to the notion of modal

operators on bounded archimedean `-algebras and in particular on rings of continuous real-

valued functions on compact Hausdorff spaces. This new duality is also a generalization of

the classic Jónsson-Tarski duality in modal logic.
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1 Introduction

This thesis presents some new contributions towards two different directions in the study

of modal logic. In the first part we will employ tense logic to provide a temporal inter-

pretation of intuitionistic quantifiers as “always in the future” and “sometime in the past.”

This is achieved by modifying the Gödel translation, thus resolving an asymmetry between

the interpretation of intuitionistic quantifiers. This results in new tense logics that are of

independent interest.

Duality theory for modal algebras yields that modal operators on boolean algebras can

be modeled by continuous relations on Stone spaces. In the second part of this thesis we will

show that this approach generalizes to compact Hausdorff spaces. We achieve this by general-

izing Gelfand-Naimark-Stone duality between compact Hausdorff spaces and uniformly com-

plete bounded archimedean `-algebras to a duality encompassing compact Hausdorff spaces

with continuous relations. This will lead us to the definition of modal operators on bounded

archimedean `-algebras and in particular on rings of continuous real-valued functions on

a compact Hausdorff space. This new duality also generalizes the classic Jónsson-Tarski

duality in modal logic.

Temporal interpretation of intuitionistic quantifiers

Intuitionism originates from the writings of Brouwer at the beginning of the twentieth

century. In 1920s Heyting provided a formal framework to work with intuitionistic logic

by axiomatizing it. Topological semantics was developed in 1930s by Stone [104] and

Tarski [107, 108] (see also McKinsey-Tarski [92]). At the beginning of 1960s, the discov-
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ery of relational semantics revolutionized the study of intuitionistic logic. An intuitionistic

frame consists of a set of worlds together with an accessibility partial order. The two quan-

tifiers are not definable from each other in intuitionistic logic. Moreover, their interpretation

in the relational semantics is asymmetric. Indeed, a world w of a model satisfies the formula

∀xA iff A is true at every object of the domain Dv of every world v accessible from w, while w

satisfies ∃xA iff A is true at some object in the domain Dw of w. One can think of the worlds

in an intuitionistic frame as states of knowledge and the accessibility order as a temporal

ordering of the states. Under this interpretation, intuitionism can be thought of as the logic

of the evolution of scientific knowledge. In this way we interpret the intuitionistic universal

quantifier as “for every object in the future,” while the existential quantifier as “for some

object in the present.” Thinking of the accessibility order in a temporal way can resolve

the asymmetry between the two quantifiers. Indeed, it is also true that in any intuitionistic

model a world w satisfies ∃xA iff A is true at some object of the domain Dv of some world v

from which w is accessible. Thus, the existential quantifier can be interpreted as “for some

object in the past.” The goal of the first part of this dissertation is to realize this temporal

interpretation via translations into tense logics.

Gödel [66] defined a full and faithful translation of the intuitionistic propositional calculus

IPC into the classical propositional modal system S4. This translation was studied from the

point of view of the algebraic semantics by McKinsey and Tarski [93]. Heyting algebras

provide an algebraic semantics for IPC and algebraic semantics for S4 is given by closure

algebras, which are boolean algebras together with an operator 3 satisfying Kuratowski

axioms. The operator dual to 3 is denoted by 2. Closure algebras are also called S4-algebras

in the literature on modal logic. McKinsey and Tarski showed that Heyting algebras are up
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to isomorphism the algebras of 2-fixpoints of S4-algebras. The motivation to study S4-

algebras comes from topology since the closure operator on a topological space satisfies the

Kuratowski axioms.

There are infinitely many propositional modal logics extending S4 into which IPC can be

translated. Esakia’s theorem [50] states that the logic Grz introduced by Grzegorczyk [70]

is the largest one with this property. Moreover, the Blok-Esakia theorem says that the

Gödel translation gives rise to a lattice isomorphism between the lattice of propositional

intuitionistic logics extending IPC and the lattice of classical normal modal logics extending

Grz (see, e.g, [40, p. 325]).

The Gödel translation can be extended to the predicate setting by defining

(∀xA)t = 2∀xAt and (∃xA)t = ∃xAt.

Rasiowa and Sikorski [99] showed that this extension is a full and faithful translation of

the predicate intuitionistic calculus IQC into the predicate modal system QS4. However,

this translation reflects the asymmetry of the two quantifiers. We will modify the Gödel

translation so that the interpretation of the existential quantifier becomes “for some object

in the past.” To achieve this we will employ tense logic.

Tense logic was introduced by Prior [98] to reason about events occurring at different

times. Tense logics are characterized by a pair of modal operators: one for the future and one

for the past. The standard relational semantics for tense logics utilizes the same frames and

models as the usual relational semantics of modal logic. However, the temporal modalities

are interpreted using both the accessibility relation (for the future modality) and its inverse

relation (for the past modality). For more information about tense logic see [57, 67].
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We first investigate a temporal translation of the monadic fragment of intuitionistic

predicate logic consisting of the formulas containing only one fixed variable. Prior [98]

defined the monadic intuitionistic propositional calculus MIPC and Bull [37] showed that

MIPC axiomatizes the monadic fragment of IQC (see also [97]). Algebraic models of MIPC

are monadic Heyting algebras introduced by Monteiro and Varsavsky [94] and studied in

depth by Bezhanishvili in [10, 11, 12]. Fischer-Servi [52] studied the multimodal logic MS4

corresponding to the monadic fragment of QS4. Monadic S4-algebras are algebraic models

of MS4. Fischer-Servi showed that the predicate Gödel translation restricts to a full and

faithful translation of MIPC into MS4.

We introduce a tense extension of S4 which we denote by TS4. The tense modalities in

TS4 are denoted by �F and �P and are interpreted as “always in the future” and “always in

the past,” respectively. The corresponding dual operators are denoted by �F and �P and are

interpreted as “sometime in the future” and “sometime in the past”, respectively. We define

the algebraic and relational semantics for TS4 and prove completeness using canonicity. We

then modify the Gödel translation by translating ∀ as �F and ∃ as �P . We prove that this

translation embeds MIPC into TS4 fully and faithfully by utilizing the respective relational

semantics. This allows us to give the desired temporal interpretation of intuitionistic monadic

quantifiers as “always in the future” (for ∀) and “sometime in the past” (for ∃).

While MS4 and TS4 are not comparable, we introduce a common extension that we

denote by MS4.t. The system MS4.t can be thought of as a tense extension of MS4. We

provide an algebraic and relational semantics for MS4.t and prove that there exist full and

faithful translations of MIPC, MS4, and TS4 into MS4.t by utilizing the respective relational

4



semantics. Hence we obtain the following diagram, which commutes up to logical equivalence.

MS4

MIPC MS4.t

TS4

In addition, we prove that MS4.t has the finite model property (fmp). It is then an easy

consequence of the fullness and faithfulness of the translations considered that the other

systems also have the fmp.

We then move to the predicate setting where we interpret the intuitionistic universal

quantifier as “for every object in the future” and the intuitionistic existential quantifier as

“for some object in the past.” We show that such an interpretation is supported by translating

IQC fully and faithfully into a predicate tense logic by an appropriate modification of the

Gödel translation. As far as we know, this approach has not been considered in the past.

One obvious obstacle is that it is unclear what predicate tense logic to choose as a target for

such a translation. Indeed, a natural candidate would be the standard predicate extension

QS4.t of S4.t. However, since QS4.t proves the Barcan formula, and hence the Kripke frames

validating QS4.t have constant domains, IQC does not translate fully into QS4.t. Instead

we work with a weaker logic in which the universal instantiation axiom ∀xA → A(y/x)

is weakened. This approach is along the lines of Kripke [82], Hughes and Cresswell [73],

Fitting and Mendelsohn [54], and Corsi [41] who considered modal predicate logics without

the Barcan and/or converse Barcan formulas. The generalized Kripke frames considered in

this semantics have two domains associated to each world, an inner domain and an outer

domain. The inner domains are always contained in the outer domains and are not necessarily
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increasing. While variables are interpreted in the outer domains, the scope of quantifiers is

restricted to the inner domains. Utilizing this approach, we define a tense predicate logic

Q◦S4.t which is sound with respect to the generalized Kripke semantics with nonempty

increasing inner domains and constant outer domains. We modify the Gödel translation to

define a temporal translation of IQC into Q◦S4.t by setting

(∀xA)t = 2F∀xAt and (∃xA)t = 3P∃xAt.

Here 2F is the modality interpreted as “always in the future” and 3P is the modality

interpreted as “sometime in the past.” Our main result states that this translation of IQC

into Q◦S4.t is full and faithful on sentences.

Modal operators on rings of continuous functions

In the second half of the twentieth century powerful mathematical tools have been developed

to study modal logics. Algebraic semantics originates from the work of McKinsey and

Tarski [91]. Jónsson and Tarski [77] studied boolean algebras with operators (BAOs) and

began connecting the algebraic and relational semantics by obtaining the first representation

results. Further results were obtained by Dummet and Lemmon [46] and Lemmon [85]. They

culminated in 1970s with the birth of duality theory from the works of Esakia, Thomason,

and Goldblatt. By building on the work of Stone, they showed that there is a dual equivalence

between the category of modal algebras and the category of Stone spaces endowed with a

continuous relation. This is known as Jónsson-Tarski duality and it allows to link algebraic

and relational semantics through topology. In its present form it was established by Esakia

[48] and Goldblatt [68] (but see also Halmos [71]). The Jónsson-Tarski duality can also be
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obtained via algebraic/coalgebraic methods. The Vietoris endofunctor on the category of

Stone spaces associates to each Stone space the set of its closed subsets with a topology

that makes it into a Stone space. It turns out that Stone spaces together with continuous

relations can be described as coalgebras for the Vietoris functor. In [84] it is shown that

one can define an endofunctor on the category of boolean algebras so that modal algebras

are exactly the algebras for this endofunctor (see also [1, 63]). Since such algebras form

a category that is dually equivalent to the category of coalgebras for the Vietoris functor,

Jónsson-Tarski duality is obtained as a consequence.

It is often natural to drop the zero-dimensionality condition from Stone spaces and work

with compact Hausdorff spaces. Dualities for the category of compact Hausdorff spaces

have been studied extensively in the past, and there are different approaches that can be

taken. Isbell [75] proved that the category of compact Hausdorff spaces is dually equivalent

to the category of compact regular frames by associating to each space the frame of its open

subsets. De Vries [44] obtained a duality between the categories of compact Hausdorff spaces

and what we now call de Vries algebras by associating to each space the complete boolean

algebra of its regular open subsets together with a proximity relation. In the second part

of this dissertation we will be interested in dualities for compact Hausdorff spaces that are

obtained by associating with each space a set of continuous functions. These are the dualities

that historically appeared first. We now provide a short history of the different approaches

employed to investigate rings of continuous functions, for more information see [111]. The

systematic study of rings of continuous functions started in the 1930s and 1940s with the work

of Stone, Gelfand, and Kolmogorov. Gelfand and Naimark [62] showed that associating to

each compact Hausdorff space the ring of its continuous complex-valued functions gives rise

7



to a dual equivalence between the category of compact Hausdorff spaces and the category

of commutative C∗-algebras. Stone [106] axiomatized the rings of continuous real-valued

functions on compact Hausdorff spaces. These two approaches are closely related. Indeed,

the rings studied by Stone can be realized as the rings of self-adjoint elements of commutative

C∗-algebras. Since each commutative C∗-algebra is isomorphic to the complexification of the

ring of its self-adjoint elements, the two categories are equivalent.

Further study of rings of continuous real-valued functions was done by Kaplanski, Hen-

riksen, Johnson, Isbell, and others. This and related topics are discussed in detail in the

well-known book by Gillman and Jerison [65]. The study of continuous real-valued functions

in the signature of vector lattices (without multiplication) goes back to the Krein brothers,

Kakutani, Yosida, and others. Many results in this direction are collected in the well-known

book by Luxemburg and Zaanen [86]. The study of these structures continues to thrive to

this day.

Our interest here is in the more ring-theoretic approach. Recent contributions are due

to Bezhanishvili, Morandi, and Olberding who in [24] introduced and investigated bounded

archimedean `-algebras that are a particular case of the structures studied by Henriksen

and his collaborators in 1950s and 1960s. They showed that there is a dual adjunction

between the categories of compact Hausdorff spaces KHaus and the category ba` of bounded

archimedean `-algebras. This adjunction restricts to a dual equivalence between KHausand

the category uba` of uniformly complete bounded archimedean `-algebras. We will refer

to this duality as Gelfand-Naimark-Stone duality or simply as Gelfand duality. The well-

known Stone-Weierstrass theorem and Hölder’s theorem play a fundamental role in obtaining

this duality. It turns out that each bounded archimedean `-algebra can be embedded into a

8



uniformly complete one. Moreover, each uniformly complete bounded archimedean `-algebra

is isomorphic to the algebra of continuous real-valued functions over some compact Hausdorff

space. The research on bounded archimedean `-algebras turned out to be fruitful (see, e.g.,

[22, 25, 28, 29, 30]).

Isbell and de Vries dualities have been generalized to encompass continuous relations on

compact Hausdorff spaces in [15, 16]. For some time now there has been a desire to obtain

an analogous generalization of Gelfand-Naimark-Stone duality but it remained elusive for

at least two reasons. On the conceptual side, there was no agreement on what should be

the definition of modal operators on the ring C(X) of continuous real-valued functions on

a compact Hausdorff space X. On the technical side, it was unclear how to axiomatize

attempted definitions of modal operators. Both of these obstacles will be overcome by our

approach.

We call a compact Hausdorff space X together with a continuous relation R a compact

Hausdorff frame. We denote the category of compact Hausdorff frames by KHF. If (X,R) ∈

KHF and f ∈ C(X), we define the map 2Rf on X by setting

(2Rf)(x) =

{
inf fR[x] if R[x] 6= ∅
1 otherwise

for each x ∈ X, where R[x] = {y ∈ X | xRy}. We axiomatize the operator 2R on C(X)

to define modal operators on bounded archimedean `-algebras. We denote by mba` the

resulting category of bounded archimedean `-algebras equipped with a modal operator. We

show that the dual adjunction described in [24] extends to a dual adjunction between the

categories KHF and mba`. This dual adjunction restrict to a dual equivalence between the

categories KHF and the full subcategory muba` of uniformly complete algebras in mba`.

9



Following an approach similar to the one in [84], we show that the dual adjunction

between mba` and KHF can be obtained via algebraic/coalgebraic methods. The Vietoris

space can be defined for any compact Hausdorff space. Thus, the Vietoris endofunctor is

well defined on KHaus. It is well known that KHF is isomorphic to the category of coalgebras

for the Vietoris functor over KHaus. We define an endofunctor H on ba` such that mba`

is isomorphic to the category of algebras for H. In order to define H we need to investigate

free objects in ba`. Although free objects over sets do not exist in ba`, free objects over

weighted sets do exist. We then show that the dual adjunction between ba` and KHaus

extends to a dual adjunction between the categories of algebras for H and the category of

coalgebras for the Vietoris V functor on KHaus. This yields an alternate way of obtaining the

dual adjunction between mba` and KHF. Moreover, we define an endofunctor Hu on uba`

such that muba` is isomorphic to the category of algebras for Hu. The dual equivalence

between uba` and KHaus extends to a dual equivalence between the categories of algebras

for Hu and the category of coalgebras for V yielding an alternate way of obtaining the dual

equivalence between muba` and KHF.

Content

Sections 2 and 3 are based on [18]. In Section 2 we define the monadic intuitionistic logic

MIPC and the monadic S4 logic MS4. We provide their algebraic and relational semantics and

give an alternate proof that the Gödel translation from MIPC into MS4 is full and faithful.

In Section 3 we define TS4 and we prove that the temporal translation of MIPC into TS4 is

full and faithful. We then define the logic MS4.t and we obtain a diagram of translations

that is commutative up to logical equivalence.
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The content of Section 4 is based on [17]. We provide the necessary background about

predicate intuitionistic and modal logics and the predicate version of the Gödel translation.

We then define a predicate temporal translation of IQC into the new temporal predicate

system Q◦S4.t and we show it is full and faithful.

Sections 5, which is based on [20], provides the necessary background about bounded

archimedean `-algebras and Gelfand-Naimark-Stone duality and contains our new results

about modal operators on bounded archimedean `-algebras and the resulting duality that

generalized both Jónsson-Tarski duality and Gelfand-Naimark-Stone duality. Section 6 talks

about the algebraic/coalgebraic approach to Gelfand-Naimark-Stone duality and is based

on [21, 22]. We explain in detail how to overcome an obstacle in the construction of the

desired endofunctor on ba` due to the nonexistence of free objects in ba` over sets.
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Part I
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2 Monadic Gödel translation

In this section we review some well-known facts about the Gödel translation of MIPC

into the monadic fragment of the predicate S4 logic that we denote by MS4. After providing

the axiomatizations of MIPC and MS4, we define their algebraic and relational semantics.

We use canonicity of the two logical systems to prove their completeness with respect to

the relational semantics. We end the section by providing an alternate proof that the Gödel

translation restricts to a full and faithful translation of MIPC into MS4 using the relational

semantics.

2.1 MIPC

Let L be a propositional language and let L∀∃ be the extension of L with two modalities ∀

and ∃.

Definition 2.1. The monadic intuitionistic propositional calculus MIPC is the intuitionistic

modal logic in the propositional modal language L∀∃ containing

1. all theorems of the intuitionistic propositional calculus IPC (see, e.g, [60, p. 6]);

2. the S4-axioms for ∀:

(a) ∀(p ∧ q)↔ (∀p ∧ ∀q),

(b) ∀p→ p,

(c) ∀p→ ∀∀p;

3. the S5-axioms for ∃:
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(a) ∃(p ∨ q)↔ (∃p ∨ ∃q),

(b) p→ ∃p,

(c) ∃∃p→ ∃p,

(d) (∃p ∧ ∃q)→ ∃(∃p ∧ q);

4. the axioms connecting ∀ and ∃:

(a) ∃∀p↔ ∀p,

(b) ∃p↔ ∀∃p;

and closed under the rules of modus ponens, substitution, and necessitation (ϕ/∀ϕ).

Remark 2.2.

1. There are a number of axioms that are equivalent to axiom (3d) (see, e.g., [10, Lem. 2(d)]).

2. The two modalities ∀ and ∃ are not definable from each other. Furthermore, there is an

asymmetry in the axioms that the two satisfy. Indeed, the formula ∀(∀p∨q)→ (∀p∨∀q),

that is the ∀-analogue of axiom (3d), is not a theorem of MIPC.

2.1.1 Monadic Heyting algebras

The algebraic semantics for MIPC is given by monadic Heyting algebras. These algebras were

first introduced by Monteiro and Varsavsky [94] as a generalization of monadic (boolean)

algebras of Halmos [71]. For a detailed study of monadic Heyting algebras we refer to

[10, 11, 12].

Definition 2.3. Let H be a Heyting algebra.
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1. A unary function i : H → H is an interior operator on H if

(a) i(a ∧ b) = ia ∧ ib,

(b) i1 = 1,

(c) ia ≤ a,

(d) ia ≤ iia.

2. A unary function c : H → H is a closure operator on H if

(a) c(a ∨ b) = ca ∨ cb,

(b) c0 = 0,

(c) a ≤ ca,

(d) cca ≤ ca.

Definition 2.4. A monadic Heyting algebra is a triple A = (H,∀,∃) where H is a Heyting

algebra, ∀ is an interior operator on H, and ∃ is a closure operator on H satisfying:

1. ∃(∃a ∧ b) = ∃a ∧ ∃b,

2. ∀∃a = ∃a,

3. ∃∀a = ∀a.

Let MHA be the variety of all monadic Heyting algebras.

Remark 2.5. Let (H,∀,∃) be a monadic Heyting algebra.

1. Definition 2.4(1) has a number of equivalent conditions (see, e.g., [10, Lem. 2(d)]).

These together with the conditions connecting ∀ and ∃ yield that the fixpoints of ∀
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form a subalgebra H0 of H which coincides with the subalgebra of the fixpoints of ∃.

Moreover, ∀ and ∃ are the right and left adjoints of the identity embedding H0 → H,

and up to isomorphism each monadic Heyting algebra arises this way (see, e.g., [10,

Sec. 3]).

2. The non-symmetry of ∀ and ∃ is manifested by the fact that the ∀-analogue ∀(∀a∨b) =

∀a ∨ ∀b of Definition 2.4(1) does not hold in general.

The standard Lindenbaum-Tarski construction (see, e.g., [100, Ch. VI]) yields that monadic

Heyting algebras provide a sound and complete algebraic semantics for MIPC.

2.1.2 Relational semantics

We now turn to the relational semantics for MIPC. There are several such (see, e.g., [11]),

but we concentrate on the one introduced by Ono [95].

Definition 2.6. An MIPC-frame is a triple F = (X,R,Q) where X is a set, R is a partial

order, Q is a quasi-order (reflexive and transitive), and the following two conditions are

satisfied:

(O1) R ⊆ Q,

(O2) xQy ⇒ (∃z)(xRz & zEQy).

Here EQ is the equivalence relation defined by xEQy iff xQy and yQx.

Let F = (X,R,Q) be an MIPC-frame. As usual, for x ∈ X, we write

R[x] = {y ∈ X | xRy} and R−1[x] = {y ∈ X | yRx},
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Figure 1: Condition (O2).

and for U ⊆ X, we write

R[U ] =
⋃
{R[u] | u ∈ U} and R−1[U ] =

⋃
{R−1[u] | u ∈ U}.

We use the same notation for Q and EQ. Since EQ is an equivalence relation, we have that

EQ[x] = (EQ)−1[x] and EQ[U ] = (EQ)−1[U ].

We call a subset U of X an R-upset provided U = R[U ] (x ∈ U and xRy imply y ∈ U).

Let Up(X) be the set of all R-upsets of F. It is well known that Up(X) is a Heyting algebra,

where the lattice operations are set-theoretic union and intersection, and U → V is calculated

by

U → V = {x ∈ X | R[x] ∩ U ⊆ V } = X \R−1[U \ V ].

In addition, for U ∈ Up(X), define

∀Q(U) = X \Q−1[X \ U ] and ∃Q(U) = EQ[U ].

Then F+ = (Up(X),∀Q,∃Q) is a monadic Heyting algebra (see, e.g., [11, Sec. 6]).

Remark 2.7. If U ∈ Up(X), then Definition 2.6(O2) implies that EQ[U ] = Q[U ]. That

∃Q(U) = Q[U ] motivates our interpretation of ∃ as “sometime in the past.” Indeed, taking

Q[U ] is the standard way to associate an operator on ℘(X) to the tense modality “sometime
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in the past” (see, e.g., [110, p. 151]). As a consequence of this, (F+)0 is the set of Q-upsets

of F.

Each monadic Heyting algebra A = (H,∀,∃) can be represented as a subalgebra of F+

for some MIPC-frame F. For this we recall the definition of the canonical frame of A.

Definition 2.8. Let A = (H,∀, ∃) be a monadic Heyting algebra. The canonical frame of A

is the frame A+ = (XA, RA, QA) where XA is the set of prime filters of H, RA is the inclusion

relation, and xQAy iff x ∩H0 ⊆ y (equivalently, x ∩H0 ⊆ y ∩H0).

By [11, Sec. 6], A+ is an MIPC-frame.

Definition 2.9. We call an MIPC-frame F canonical if it is isomorphic to A+ for some

monadic Heyting algebra A.

Define the Stone map β : A→ Up(XA) by

β(a) = {x ∈ XA | a ∈ x}.

By [11, Sec. 6], β : A→ (A+)+ is a one-to-one homomorphism of monadic Heyting algebras.

Thus, we arrive at the following representation theorem for monadic Heyting algebras.

Proposition 2.10. Each monadic Heyting algebra A is isomorphic to a subalgebra of (A+)+.

Remark 2.11.

1. The image of A inside (A+)+ can be recovered by introducing a Priestley topology

on XA. This leads to the notion of perfect MIPC-frames and a duality between the

category of monadic Heyting algebras and the category of perfect MIPC-frames; see [11,

Thm. 17].
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2. When A is finite, its embedding into (A+)+ is an isomorphism, and hence the categories

of finite monadic Heyting algebras and finite MIPC-frames are dually equivalent.

The next corollary is an immediate consequence of the above considerations.

Corollary 2.12. MIPC is canonical; that is,

A ∈ MHA⇒ (A+)+ ∈ MHA.

A valuation on an MIPC-frame F = (X,R,Q) is a map v associating an R-upset of X

to any propositional letter of L∀∃. The connectives ∧,∨,→,¬ are then interpreted as in

intuitionistic Kripke frames, and ∀,∃ are interpreted by

x �v ∀ϕ iff (∀y ∈ X)(xQy ⇒ y �v ϕ),

x �v ∃ϕ iff (∃y ∈ X)(xEQy & y �v ϕ).

We say that ϕ is valid in F, and write F � ϕ, if x �v ϕ for every valuation v and every

x ∈ X.

Theorem 2.13. MIPC ` ϕ iff F � ϕ for every MIPC-frame F.

Proof. Soundness of MIPC with respect to this semantics is straightforward to prove. For

completeness, suppose that MIPC 0 ϕ. By algebraic completeness, there is a monadic

Heyting algebra A such that A 2 ϕ. Since A is isomorphic to a subalgebra of (A+)+, we

have (A+)+ 2 ϕ. Thus, A+ is an MIPC-frame such that A+ 2 ϕ.

We conclude this section by recalling that MIPC has the fmp. This was first established

by Bull [36] using algebraic semantics. His proof contained a gap, which was corrected

independently by Fischer-Servi [53] and Ono [95]. A semantic proof is given in [58], which is

based on the technique developed by Grefe [69]. We will give yet another proof of this result

in Section 3.5.
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2.2 MS4

We now recall the definition of the monadic S4 logic MS4. Let L2∀ be a propositional bimodal

language with two modal operators 2 and ∀.

Definition 2.14. The monadic S4, denoted MS4, is the smallest classical bimodal logic

containing the S4-axioms for 2, the S5-axioms for ∀, the left commutativity axiom

2∀p→ ∀2p,

and closed under modus ponens, substitution, 2-necessitation, and ∀-necessitation.

As usual, 3 is an abbreviation for ¬2¬ and ∃ is an abbreviation for ¬∀¬.

Remark 2.15. Recalling the definition of fusion of two logics (see [58]), MS4 is obtained

from the fusion S4 ⊗ S5 by adding the left commutativity axiom 2∀p → ∀2p which is the

monadic version of the converse Barcan formula. The monadic version of the Barcan formula

is the right commutativity axiom ∀2p → 2∀p. Adding it to MS4 yields the product logic

S4× S5; see [58, Ch. 5] for details.

2.2.1 Monadic S4 algebras

The algebraic semantics for MS4 is given by monadic S4-algebras. To define these algebras,

we first recall the definition of S4-algebras and S5-algebras.

Definition 2.16.

1. An S4-algebra, or an interior algebra, is a pair B = (B,2) where B is a boolean algebra

and 2 is an interior operator on B (see Definition 2.3(1)).
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2. An S5-algebra, or a monadic algebra, is an S4-algebra B = (B, ∀) that in addition

satisfies a ≤ ∀∃a for all a ∈ B.

Remark 2.17. S4-algebras were first introduced by McKinsey and Tarski [91]. They worked

with the closure operator 3 dual to 2 and hence they called them closure algebras. Rasiowa

and Sikorski [100] switched to 2 and called them topological boolean algebras. Blok [35] called

them interior algebras. S5-algebras were defined by Halmos [71] who called them monadic

algebras. The names S4-algebra and S5-algebra became standard in the modal logic literature

of the end of the twentieth century and the beginning of the twenty-first century.

We are ready to define monadic S4-algebras.

Definition 2.18. A monadic S4-algebra, or an MS4-algebra for short, is a tuple B =

(B,2,∀) where

1. (B,2) is an S4-algebra,

2. (B, ∀) is an S5-algebra,

3. 2∀a ≤ ∀2a for each a ∈ B.

Lemma 2.19. The axiom 2∀a ≤ ∀2a in Definition 2.18 can be replaced by any of the

following:

1. 2∀2a = 2∀a.

2. ∀2∀a = 2∀a.

3. ∃2∃a = 2∃a.
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4. 2∃2a = ∃2a.

5. ∃2a ≤ 2∃a.

Proof. Showing that (1) and (2) are equivalent to 2∀a ≤ ∀2a is straightforward. That

(3) and (4) are equivalent to (5) can be proved similarly. We show that (2) and (3) are

equivalent. Suppose (2) holds. Then for each a ∈ B, we have

∀2∃a = ∀2∀∃a = 2∀∃a = 2∃a.

Using ∀2∃a = 2∃a twice, we obtain

∃2∃a = ∃∀2∃a = ∀2∃a = 2∃a,

yielding (3). Proving (2) from (3) is analogous.

Remark 2.20. As noted above, the inequality 2∀a ≤ ∀2a is equivalent to the equality

∀2∀a = 2∀a. This yields that the set B0 of ∀-fixpoints of an MS4-algebra (B,2,∀) forms

an S4-subalgebra of (B,2) such that ∀ is the right adjoint to the identity embedding B0 → B.

Moreover, up to isomorphism each MS4-algebra arises this way. This is similar to the case

of monadic Heyting algebras (see Remark 2.5(1)).

The Lindenbaum-Tarski construction yields that MS4-algebras provide a sound and com-

plete algebraic semantics for MS4.

2.2.2 Relational semantics

The relational semantics for MS4 was first introduced by Esakia [51].
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Definition 2.21. An MS4-frame is a triple F = (X,R,E) where X is a set, R is a quasi-

order, E is an equivalence relation, and the following commutativity condition is satisfied:

(∀x, y, z ∈ X)(xEy & yRz)⇒ (∃u ∈ X)(xRu & uEz). (E)

x

u

y

z
E

E

R R

Figure 2: Condition (E).

A valuation on an MS4-frame F = (X,R,E) is a map v associating a subset of X to each

propositional letter of L2∀. Then the boolean connectives are interpreted as usual,

x �v 2ϕ iff (∀y ∈ X)(xRy ⇒ y �v ϕ),
x �v ∀ϕ iff (∀y ∈ X)(xEy ⇒ y �v ϕ).

We say that ϕ is valid in F, in symbols F � ϕ, if x �v ϕ for every valuation v and x ∈ X.

As a consequence of Lemma 2.19, the axiom 2∀p → ∀2p can be replaced by the axiom

∃2p→ 2∃p. Thus, MS4 can be axiomatized by Sahlqvist formulas (see, e.g, [34, Sec. 3.6]).

This yields the following theorem (see, e.g., [34, Thm. 4.42]):

Theorem 2.22. MS4 is canonical and hence is complete with respect to the relational se-

mantics, i.e.

MS4 ` ϕ iff F � ϕ for every MS4-frame F.

In addition, MS4 has the fmp and is decidable. This can be derived from the results

in [59, Sec. 12] (see also [58, Thms. 6.52, 9.12]). As we will see in Section 3.5, this result also

follows from the fmp of a stronger multimodal system.
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We conclude this section by proving a representation theorem for MS4-algebras. For an

MS4-frame F = (X,R,E), let ℘(X) be the powerset of X and for U ∈ ℘(X) let

2R(U) = X \R−1[X \ U ] and ∀E(U) = X \ E[X \ U ].

Since R is a quasi-order, (℘(X),2R) is an S4-algebra; and since E is an equivalence relation,

(℘(X),∀E) is an S5-algebra (see [77, Thm. 3.5]). In addition, the commutativity condition

yields that F+ := (℘(X),2R,∀E) is an MS4-algebra.

In fact, as in the case of monadic Heyting algebras, each MS4-algebra B = (B,2,∀) is

isomorphic to a subalgebra of F+ for some MS4-frame F. We can take F to be the canonical

frame of B. Let H be the set of 2-fixpoints and B0 the set of ∀-fixpoints. Then H is a

Heyting algebra which is a bounded sublattice of B, and B0 is an S4-subalgebra of (B,2).

Remark 2.23. If B = F+, then the elements of H are the R-upsets of F and the elements

of B0 are the E-saturated subsets of F (that is, unions of E-equivalence classes).

Definition 2.24. Let B = (B,2, ∀) be an MS4-algebra. The canonical frame of B is the

frame B+ = (XB, RB, EB) where XB is the set of ultrafilters of B, xRBy iff x ∩ H ⊆ y

(equivalently, x ∩H ⊆ y ∩H), and xEBy iff x ∩B0 = y ∩B0.

Lemma 2.25. If B is an MS4-algebra, then B+ is an MS4-frame.

Proof. Since (B,2) is an S4-algebra, RB is a quasi-order (see [77, Thm. 3.14]); and since

(B, ∀) is an S5-algebra, EB is an equivalence relation (see [77, Thm. 3.18]). It remains to

show that Definition 2.21(E) is satisfied. Let x, y, z ∈ XB be such that xEBy and yRBz.

This means that x ∩ B0 = y ∩ B0 and y ∩ H ⊆ z. Let F be the filter of B generated by

(x∩H)∪ (z ∩B0). We show that F is proper. Otherwise, since x∩H and z ∩B0 are closed
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under meets, there are a ∈ x ∩ H and b ∈ z ∩ B0 such that a ∧ b = 0. Therefore, a ≤ ¬b.

Thus, a = 2a ≤ 2¬b, so 2¬b ∈ x. Since B0 is an S4-subalgebra of (B,2) and b ∈ B0,

we have 2¬b ∈ B0. This yields 2¬b ∈ x ∩ B0 = y ∩ B0, which implies 2¬b ∈ y ∩ H ⊆ z.

Therefore, ¬b ∈ z which contradicts b ∈ z. Thus, F is proper, and so there is an ultrafilter

u of B such that F ⊆ u. Consequently, x ∩H ⊆ u and z ∩ B0 ⊆ u ∩ B0. Since z ∩ B0 and

u ∩B0 are both ultrafilters of B0, we conclude that z ∩B0 = u ∩B0. Thus, there is u ∈ XB

with xRBu and uEBz.

Definition 2.26. We call an MS4-frame canonical if it is isomorphic to B+ for some MS4-

algebra B.

For an MS4-algebra B, it follows from [77, Thm. 3.14] that the Stone map β : B →

℘(XB) is a one-to-one homomorphism of MS4-algebras. Thus, we arrive at the following

representation theorem.

Proposition 2.27. Each MS4-algebra B is isomorphic to a subalgebra of (B+)+.

Remark 2.28.

1. To recover the image of B in ℘(XB) we need to endow XB with a Stone topology.

This leads to the notion of perfect MS4-frames and a duality between the category of

MS4-algebras and the category of perfect MS4-frames which generalizes Esakia duality

for S4-algebras. This situation is analogous to the one for monadic Heyting algebras

and perfect MIPC-frames (see Remark 2.11).

2. When B is finite, its embedding into (B+)+ is an isomorphism, and hence the categories

of finite MS4-algebras and finite MS4-frames are dually equivalent.
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2.3 Gödel translation of MIPC into MS4

We recall that the Gödel translation of MIPC into MS4 is defined by

⊥t = ⊥
pt = 2p for each propositional letter p

(ϕ ∧ ψ)t = ϕt ∧ ψt
(ϕ ∨ ψ)t = ϕt ∨ ψt

(ϕ→ ψ)t = 2(¬ϕt ∨ ψt)
(∀ϕ)t = 2∀ϕt
(∃ϕ)t = ∃ϕt

It was shown by Fischer-Servi [52] that this translation is full and faithful, meaning that

MIPC ` ϕ iff MS4 ` ϕt.

Fischer-Servi used the translations of MIPC and MS4 into IQC and QS4 respectively, and the

predicate version of the Gödel translation. In [53] she gave a different proof of this result

using the fmp for MIPC. We give yet another proof utilizing relational semantics for MIPC

and MS4. Our proof generalizes the semantic proof that the Gödel translation of IPC into

S4 is full and faithful (see, e.g., [40, Sec. 3.9]). We require the following lemma.

Lemma 2.29. For any formula χ of L∀∃, we have

MS4 ` χt → 2χt.

Proof. We first show that MS4 ` ∃2ϕ → 2∃ϕ for any formula ϕ of L2∀. For this, by

algebraic completeness, it is sufficient to prove that the inequality ∃2a ≤ 2∃a holds in every

MS4-algebra (B,2,∀). Let a ∈ B. We have

∃2a ≤ ∃2∃a = ∃2∀∃a ≤ ∃∀2∃a = ∀2∃a ≤ 2∃a.

We are now ready to prove that MS4 ` χt → 2χt by induction on the complexity of χ.

This is obvious when χ = ⊥. The cases when χ is p, ϕ → ψ, or ∀ϕ follow from the
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axiom 2ϕ → 22ϕ. We next consider the cases when χ is ϕ ∧ ψ or ϕ ∨ ψ. Suppose that

the claim is true for ϕ and ψ, so ϕt → 2ϕt and ψt → 2ψt are theorems of MS4. Then

ϕt ∧ψt → 2(ϕt ∧ψt) and ϕt ∨ψt → 2(ϕt ∨ψt) are also theorems of MS4. Finally, if χ is ∃ϕ

and MS4 ` ϕt → 2ϕt, then MS4 ` ∃ϕt → ∃2ϕt. Therefore, since MS4 ` ∃2ϕt → 2∃ϕt, we

conclude that MS4 ` ∃ϕt → 2∃ϕt.

In the next definition we generalize to MS4-frames the well-known definition of skeleton

(see, e.g., [40, Sec. 3.9]).

Definition 2.30. Let F = (X,R,E) be an MS4-frame. Define the relation QE on X by

setting xQEy iff (∃z ∈ X)(xRz & zEy). Then the skeleton Ft = (X ′, R′, Q′) of F is defined

as follows. Let ∼ be the equivalence relation on X given by x ∼ y iff xRy and yRx. We let

X ′ be the set of equivalence classes of ∼, and define R′ and Q′ on X ′ by [x]R′[y] iff xRy and

[x]Q′[y] iff xQEy.

Proposition 2.31.

1. If F is an MS4-frame, then Ft is an MIPC-frame.

2. For each valuation v on F there is a valuation v′ on Ft such that for each x ∈ F and

L∀∃-formula ϕ, we have

Ft, [x] �v′ ϕ iff F, x �v ϕ
t.

3. For each L∀∃-formula ϕ, we have

Ft � ϕ iff F � ϕt.

4. For each MIPC-frame G there is an MS4-frame F such that G is isomorphic to Ft.
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Proof. (1). It is well known that (X ′, R′) is an intuitionistic Kripke frame. That Q′ is well

defined follows from Condition (E). Showing that Q′ is a quasi-order, and that (O1) and

(O2) hold in Ft is straightforward.

(2). Define v′ on Ft by v′(p) = {[x] ∈ X ′ | R[x] ⊆ v(p)}. We show that Ft, [x] �v′ ϕ iff

F, x �v ϕt by induction on the complexity of ϕ. Since v′(p) = {[x] | F, x �v 2p}, the claim is

obvious when ϕ is a propositional letter. We prove the claim for ϕ of the form ∀ψ and ∃ψ

since the other cases are well known. Suppose ϕ = ∀ψ. By the definition of Q′ and induction

hypothesis, we have

Ft, [x] �v′ ∀ψ iff (∀[y] ∈ X ′)([x]Q′[y] ⇒ Ft, [y] �v′ ψ)

iff (∀y ∈ X)(xQEy ⇒ Ft, [y] �v′ ψ)

iff (∀y ∈ X)(xQEy ⇒ F, y �v ψ
t).

On the other hand,

F, x �v (∀ψ)t iff F, x �v 2∀ψt

iff (∀z ∈ X)(xRz ⇒ (∀y ∈ X)(zEy ⇒ F, y �v ψ
t))

iff (∀y ∈ X)(xQEy ⇒ F, y �v ψ
t).

Thus, Ft, [x] �v′ ∀ψ iff F, x �v (∀ψ)t.

Suppose ϕ = ∃ψ. As noted in Remark 2.7, Q′ and EQ′ coincide on R′-upsets, and it is

straightforward to see by induction that the set {[y] | Ft, [y] �v′ ψ} is an R′-upset. Therefore,

by the induction hypothesis,

Ft, [x] �v′ ∃ψ iff (∃[y] ∈ X ′)([x]EQ′ [y] & Ft, [y] �v′ ψ)

iff [x] ∈ EQ′ [{[y] | Ft, [y] �v′ ψ}]
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iff [x] ∈ Q′[{[y] | Ft, [y] �v′ ψ}]

iff x ∈ QE[{y | Ft, [y] �v′ ψ}]

iff x ∈ QE[{y | F, y �v ψ
t}].

On the other hand,

F, x �v (∃ψ)t iff F, x �v ∃ψt

iff (∃y ∈ X)(xEy & F, y �v ψ
t)

iff x ∈ E[{y | F, y �v ψ
t}]

iff x ∈ QE[{y | F, y �v ψ
t}]

since, by Lemma 2.29, the set {y | F, y �v ψt} is an R-upset, and E and QE coincide on

R-upsets. Thus, Ft, [x] �v′ ∃ψ iff F, x �v (∃ψ)t.

(3). If F 2 ϕt, then there is a valuation v on F such that F, x 2v ϕt for some x ∈ X. By

(2), v′ is a valuation on Ft such that Ft, [x] 2v′ ϕ. Therefore, Ft 2 ϕ. If Ft 2 ϕ, then there is

a valuation w on Ft and [x] ∈ X ′ such that Ft, [x] 2w ϕ. Let v be the valuation on F given

by v(p) = {x | [x] ∈ w(p)}. Since Ft is an MIPC-frame, w(p) is an R′-upset of Ft for each p.

So v(p) is an R-upset of F for each p. Therefore, w = v′ because

v′(p) = {[x] ∈ X ′ | R[x] ⊆ v(p)} = {[x] ∈ X ′ | x ∈ v(p)} = w(p).

Thus, Ft, [x] 2v′ ϕ. By (2), F, x 2v ϕt. Consequently, F 2 ϕt.

(4). Let G = (X,R,Q) be an MIPC-frame. We show that F = (X,R,EQ) is an MS4-

frame. If xEQy and yRz, then by definition of EQ and condition (O1) of MIPC-frames, xQy

and yQz. Since Q is transitive, xQz. Condition (O2) then implies that there is u ∈ X with
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xRu and uEQz. Thus, F is an MS4-frame. Since R is a partial order, ∼ is the identity

relation. It then follows from condition (O2) that Q = QEQ , and hence G is isomorphic to

Ft.

Remark 2.32. In general, we cannot recover an MS4-frame F = (X,R,E) from its skeleton

Ft even if R is a partial order. Indeed, it is not always the case that E = EQE . However, if

F is canonical (and in particular finite), then E = EQE ; see [11, Sec. 2] for details.

We are now ready to give an alternate proof of the fullness and faithfulness of the monadic

Gödel translation.

Theorem 2.33. The Gödel translation of MIPC into MS4 is full and faithful; that is,

MIPC ` ϕ iff MS4 ` ϕt.

Proof. To prove faithfulness, suppose that MS4 0 ϕt. By Theorem 2.22, there is an MS4-

frame F such that F 2 ϕt. By Proposition 2.31, Ft is an MIPC-frame and Ft 2 ϕ. Thus, by

Theorem 2.13, MIPC 0 ϕ. For fullness, let MIPC 0 ϕ. Then there is an MIPC frame G such

that G 2 ϕ. By Proposition 2.31(4), there is an MS4-frame such that G isomorphic to Ft.

Therefore, Ft 2 ϕ. Proposition 2.31(3) implies that F 2 ϕt. Thus, MS4 0 ϕt.
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3 Temporal interpretation of monadic intuitionistic quantifiers

The goal of this section is to provide a modification of the Gödel translation that realizes

the temporal interpretation of monadic intuitionistic quantifiers as “always in the future”

for ∀ and “sometime in the past” for ∃. We introduce a new tense logic TS4 that will be the

target of the translation. In order to define TS4, it is convenient to first describe the tense

logic S4.t. We then define the temporal translation of MIPC into TS4 and prove that it is

full and faithful using relational semantics. We compare this new temporal translation with

the standard Gödel translation of MIPC into MS4 described in the previous section. For this,

we introduce the logic MS4.t and show that both MS4 and TS4 can be translated fully and

faithfully into MS4.t. All these translations together form a diagram that is commutative

up to logical equivalence. We end the section by proving that MS4.t has the finite model

property (fmp). Since all the translations into MS4.t are full and faithful, as a consequence

we obtain that the other logics involved also have the fmp.

3.1 S4.t

The tense logic S4.t is the extension of the least tense logic K.t in which both tense modalities

satisfy the S4-axioms. This system was studied by several authors. In particular, Esakia [49]

showed that an extension of the Gödel translation embeds the Heyting-Brouwer logic HB of

Rauszer [101] into S4.t fully and faithfully. The language of HB is obtained by enriching the

language of IPC by an additional connective of coimplication, and the logic HB is the exten-

sion of IPC by the axioms for coimplication, which are dual to the axioms for implication.

31



Wolter [113] extended the celebrated Blok-Esakia Theorem to this setting.

Let LT be the propositional tense language with two modalities 2F and 2P . As usual,

2F is interpreted as “always in the future” and 2P as “always in the past.” We use the

following standard abbreviations: 3F for ¬2F¬ and 3P for ¬2P¬. Then 3F is interpreted

as “sometime in the future” and 3P as “sometime in the past.”

Definition 3.1. Let S4.t be the smallest classical bimodal logic containing the S4-axioms

for 2F and 2P , the tense axioms

p→ 2P3Fp

p→ 2F3Pp

and closed under modus ponens, substitution, 2F -necessitation, and 2P -necessitation.

3.1.1 S4.t-algebras

Algebraic semantics for S4.t was studied by Esakia [49], where the duality theory for S4-

algebras was generalized to S4.t-algebras.

Definition 3.2. An S4.t-algebra is a triple (B,2F ,2P ) where (B,2F ), (B,2P ) are S4-

algebras and for each a ∈ B we have

a ≤ 2P3Fa (PF)

a ≤ 2F3Pa (FP)

The Lindenbaum-Tarski construction yields that S4.t-algebras provide a sound and com-

plete algebraic semantics for S4.t.
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3.1.2 Relational semantics

Relational semantics for S4.t is given by S4.t-frames.

Definition 3.3. An S4.t-frame is a pair F = (X,R) where X is a set and R is a quasi-order

on X.

A valuation on an S4.t-frame F = (X,R) is a map v associating a subset of X to each

propositional letter of LT . The classical connectives are interpreted as usual, and the tense

modalities are interpreted as

x �v 2Fϕ iff (∀y ∈ X)(xRy ⇒ y �v ϕ),
x �v 2Pϕ iff (∀y ∈ X)(yRx ⇒ y �v ϕ).

As usual, we say that ϕ is valid in F, in symbols F � ϕ, if x �v ϕ for every valuation v and

x ∈ X.

It is straightforward to see that all the axioms of S4.t are Sahlqvist formulas. Therefore,

by the Sahlqvist completeness theorem we have that S4.t is canonical and is complete with

respect to the relational semantics. That S4.t has the fmp follows from [103, pp. 313–314]

(see also [67, p. 44] and Remark 3.44).

We also have the following representation of S4.t-algebras. Let R˘ be the converse of R.

For U ∈ ℘(X) let

2R(U) = X \R−1[X \ U ] and 2R˘(U) = X \R[X \ U ].

Since R is a quasi-order, so is R ,̆ so (℘(X),2R) and (℘(X),2R˘) are S4-algebras. A standard

argument (see [77, Thm. 3.6]) gives that F+ := (℘(X),2R,2R˘) satisfies (PF) and (FP).

Therefore, F+ is an S4.t-algebra, and each S4.t-algebra B = (B,2F ,2P ) is isomorphic to a

subalgebra of F+ for some S4.t-frame F. As usual, we can take F to be the canonical frame
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of B. Let HF and HP be the sets of 2F -fixpoints and 2P -fixpoints, respectively. Since 2F

and 2P are S4-operators, HF and HP are Heyting algebras.

Remark 3.4. Let (B,2F ,2P ) be an S4.t-algebra. It follows from Definition 3.2 that HF

coincides with the set of 3P -fixpoints and HP with the set of 3F -fixpoints. Moreover, ¬maps

HF to HP and vice versa. Indeed, if a ∈ HF , then a = 2Fa. By (PF), 3Pa = 3P2Fa ≤ a,

so 3Pa = a, and hence 2P¬a = ¬3Pa = ¬a. Therefore, ¬a ∈ HP . Similarly, if a ∈ HP ,

then ¬a ∈ HF . Thus, ¬ is a dual isomorphism between HF and HP .

Let B = (B,2F ,2P ) be an S4.t-algebra. The canonical frame of B is the frame B+ =

(XB, RB) where XB is the set of ultrafilters of B and xRBy iff x ∩ HF ⊆ y; equivalently,

y ∩HP ⊆ x. By a standard argument, if B is an S4.t-algebra, then B+ is an S4.t-frame and

we have the following representation theorem:

Proposition 3.5. If B is an S4.t-algebra, then B is isomorphic to a subalgebra of (B+)+.

Remark 3.6. To recover the image of B in ℘(XB) we need to endow XB with a Stone

topology. This leads to the notion of perfect S4.t-frames and a duality between the category

of S4.t-algebras and the category of perfect S4.t-frames (see [49]). When B is finite, its

embedding into (B+)+ is an isomorphism, and hence the categories of finite S4.t-algebras

and finite S4.t-frames are dually equivalent.

3.2 TS4

The tense logic TS4 will combine S4 with S4.t. We will use S4 to interpret intuitionistic

connectives, and S4.t to interpret monadic intuitionistic quantifiers. Let ML be the multi-

modal propositional language with three modalities 2, �F , and �P . We use 3, �F , and �P
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as usual abbreviations.

Definition 3.7. The logic TS4 is the least classical multimodal logic containing the S4-

axioms for 2, �F , and �P , the tense axioms for �F and �P , the connecting axioms

3p→ �Fp

�Fp→ 3(�Fp ∧ �Pp)

and closed under modus ponens, substitution, and three necessitation rules (for 2, �F , and

�P ).

3.2.1 TS4-algebras

Algebraic semantics for TS4 is given by TS4-algebras.

Definition 3.8. A TS4-algebra is a quadruple B = (B,2,�F ,�P ) where (B,2) is an

S4-algebra, (B,�F ,�P ) is an S4.t-algebra, and for each a ∈ B we have:

3a ≤ �Fa (T1)

�Fa ≤ 3(�Fa ∧ �Pa) (T2)

The Lindenbaum-Tarski construction then yields that TS4-algebras provide a sound and

complete algebraic semantic for TS4.

3.2.2 Relational semantics

Definition 3.9. A TS4-frame is a triple F = (X,R,Q) where X is a set and R,Q are

quasi-orders on X such that R ⊆ Q and xQy implies that there is z ∈ X such that xRz and

zEQy.
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Remark 3.10.

1. The only difference between TS4-frames and MIPC-frames is that in TS4-frames the

relation R is a quasi-order, while in MIPC-frames it is a partial order.

2. It is straightforward to check that if (X,R,Q) is a TS4-frame, then (X,R,EQ) is an

MS4-frame, and that if (X,R,E) is an MS4-frame, then (X,R,QE) is a TS4-frame

(see Definition 2.30). If (X,R,Q) is a TS4-frame, by definition we have that xQy iff

(∃z ∈ X)(xRz & zEQy). Thus, Q = QEQ . On the other hand, there exist MS4-frames

(X,R,E) such that E 6= EQE (see [11, p. 24]). Therefore, this correspondence is not a

bijection.

A valuation of ML into a TS4-frame F = (X,R,Q) associates with each propositional

letter a subset of X. The classical connectives are interpreted as usual, 2 is interpreted

using the relation R, and �F , �P are interpreted using the relation Q:

x �v 2ϕ iff (∀y ∈ X)(xRy ⇒ y �v ϕ),

x �v �Fϕ iff (∀y ∈ X)(xQy ⇒ y �v ϕ),

x �v �Pϕ iff (∀y ∈ X)(yQx⇒ y �v ϕ).

Consequently,
x �v 3ϕ iff (∃y ∈ X)(xRy & y �v ϕ),

x �v �Fϕ iff (∃y ∈ X)(xQy & y �v ϕ),

x �v �Pϕ iff (∃y ∈ X)(yQx & y �v ϕ).

All the axioms of TS4 are Sahlqvist formulas. Therefore, by the Sahlqvist completeness

theorem we have:

Theorem 3.11. TS4 is canonical and hence is complete with respect to the relational se-

mantics, i.e.

TS4 ` ϕ iff F � ϕ for every TS4-frame F.
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In Section 3.5 we will prove that TS4 has the fmp and hence is decidable. We conclude

this section by proving a representation theorem for TS4-algebras.

Lemma 3.12. If F = (X,R,Q) is a TS4-frame, then F+ = (℘(X),2R,2Q,2Q˘) is a TS4-

algebra.

Proof. Since R and Q are quasi-orders, (℘(X),2R) is an S4-algebra and (℘(X),2Q,2Q˘) is

an S4.t-algebra. It remains to show that F+ satisfies (T1) and (T2).

(T1) Since R ⊆ Q, we have 3R(U) = R−1[U ] ⊆ Q−1[U ] = 3Q(U).

(T2) Let x ∈ 3Q(U) = Q−1[U ], so there is y ∈ U with xQy. Then there is z ∈ X with xRz

and zEQy. Therefore, z ∈ Q−1[y] ⊆ Q−1[U ] = 3Q(U) and z ∈ Q[y] ⊆ Q[U ] = 3Q˘(U).

Thus, x ∈ R−1[z] ⊆ R−1[3Q(U) ∩3Q˘(U)] = 3R(3Q(U) ∩3Q˘(U)). This shows that

3Q(U) ⊆ 3R(3Q(U) ∩3Q˘(U)).

We next prove that each TS4-algebra is represented as a subalgebra of F+ for some TS4-

frame F. For a TS4-algebra (B,2,�F ,�P ) let H, HF , and HP be the Heyting algebras of

the 2-fixpoints, �F -fixpoints, and �P -fixpoints, respectively.

Definition 3.13. Let B = (B,2,�F ,�P ) be a TS4-algebra. The canonical frame of B is

the frame B+ = (XB, RB, QB) where XB is the set of ultrafilters of B, xRBy iff x ∩H ⊆ y,

and xQBy iff x ∩HF ⊆ y, which happens iff y ∩HP ⊆ x.

Lemma 3.14. If B is a TS4-algebra, then B+ is a TS4-frame.
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Proof. Clearly RB and QB are quasi-orders. To prove that RB ⊆ QB we first show that

HF ⊆ H. Let a ∈ HF . Then a = �Fa = ¬�F¬a = ¬�F�F¬a. By (T1),

¬�F�F¬a ≤ ¬3�F¬a = 2�Fa ≤ 2a.

Therefore, a = 2a, and so a ∈ H. Now suppose that xRBy, so x ∩H ⊆ y. Let a ∈ x ∩HF .

Then a ∈ x ∩H ⊆ y. Thus, a ∈ y, and hence xQBy.

To prove the other condition, let xQBy, so x ∩ HF ⊆ y. We show that the subset

(x∩H)∪ (y∩HF )∪ (y∩HP ) generates a proper filter of B. Otherwise, since H,HF , HP are

closed under meets, there are a ∈ x∩H, b ∈ y∩HF , and c ∈ y∩HP such that a∧b∧c = 0. By

Remark 3.4, HF coincides with the set of �P -fixpoints and HP with the set of �F -fixpoints.

Therefore, since b ∈ HF and c ∈ HP , we have �P (b ∧ c) ∧ �F (b ∧ c) ≤ �P b ∧ �F c = b ∧ c.

Thus, a∧�P (b∧ c)∧�F (b∧ c) ≤ a∧ b∧ c = 0, yielding a ≤ ¬(�P (b∧ c)∧�F (b∧ c)). Since

a ∈ H, we have

a = 2a ≤ 2¬(�P (b ∧ c) ∧ �F (b ∧ c)) = ¬3(�P (b ∧ c) ∧ �F (b ∧ c)).

Consequently, a ∧3(�P (b ∧ c) ∧ �F (b ∧ c)) = 0. By (T2),

a ∧ �F (b ∧ c) ≤ a ∧3(�P (b ∧ c) ∧ �F (b ∧ c)) = 0.

Because b ∧ c ≤ �F (b ∧ c), b ∧ c ∈ y, and y is a filter, we have �F (b ∧ c) ∈ y. Since

x ∩ HF ⊆ y, we have y ∩ HP ⊆ x. Therefore, �F (b ∧ c) ∈ y ∩ HP ⊆ x and a ∈ x. Thus,

0 = a ∧ �F (b ∧ c) ∈ x, a contradiction. Consequently, there is an ultrafilter z such that

(x∩H)∪ (y ∩HF )∪ (y ∩HP ) ⊆ z. But then x∩H ⊆ z, y ∩HF ⊆ z, and y ∩HP ⊆ z. This

gives that xRBz, yQBz, and zQBy, as desired.
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Definition 3.15. We call a TS4-frame canonical if it is isomorphic to B+ for some TS4-

algebra B.

Let B be a TS4-algebra. Since β : B → ℘(XB) is an embedding of TS4-algebras, we

obtain the following representation theorem for TS4-algebras.

Proposition 3.16. Each TS4-algebra B is isomorphic to a subalgebra of (B+)+.

Remark 3.17. To recover the image of B in ℘(XB) we need to endow XB with a Stone

topology. This leads to the notion of perfect TS4-frames and a duality between the categories

of TS4-algebras and perfect TS4-frames which generalizes Esakia duality for S4.t. When B

is finite, its embedding into (B+)+ is an isomorphism, and hence the categories of finite

TS4-algebras and finite TS4-frames are dually equivalent.

3.3 Temporal translation of MIPC into TS4

We now modify the Gödel translation in order to obtain a full and faithful translation of

MIPC into TS4 that realizes the desired temporal interpretation of the monadic intuitionistic

quantifiers.

Definition 3.18. The translation (−)\ : MIPC → TS4 is defined as (−)t on propositional

letters, ⊥, ∧, ∨, and →; and for ∀ and ∃ we set:

(∀ϕ)\ = �Fϕ
\

(∃ϕ)\ = �Pϕ\

Thus, ∀ is interpreted as “always in the future” and ∃ as “sometime in the past.”

We adapt Definition 2.30 to the setting of TS4-frames by utilizing the correspondence

between TS4-frames and MS4-frames described in Remark 3.10.
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Definition 3.19. Let F = (X,R,Q) be a TS4-frame, and let ∼ be the equivalence relation

given by x ∼ y iff xRy and yRx. We set X ′ to be the set of equivalence classes of ∼, and

define R′ and Q′ on X ′ by [x]R′[y] iff xRy and [x]Q′[y] iff xQy. We call F\ = (X ′, R′, Q′) the

skeleton of F.

Proposition 3.20.

1. If F is a TS4-frame, then F\ is an MIPC-frame.

2. For each valuation v on F there is a valuation v′ on F\ such that for each x ∈ F and

L∀∃-formula ϕ, we have

F\, [x] �v′ ϕ iff F, x �v ϕ
\.

3. For each L∀∃-formula ϕ, we have

F\ � ϕ iff F � ϕ\.

4. Any MIPC-frame G is also a TS4-frame and G\ is isomorphic to G.

Proof. (1). It is well known that (X ′, R′) is an intuitionistic Kripke frame. The relation Q′

is well defined on X ′ because R ⊆ Q in F. Showing that Q′ is a quasi-order, and that (O1)

and (O2) hold in F\ is straightforward.

(2). As in Proposition 2.31(2), we define v′ by v′(p) = {[x] ∈ X ′ | R[x] ⊆ v(p)} and show

that F\, [x] �v′ ϕ iff F, x �v ϕ\ by induction on the complexity of ϕ. It is sufficient to only

consider the cases when ϕ is of the form ∀ψ or ∃ψ. Suppose ϕ = ∀ψ. Then by the definition

of Q′ and induction hypothesis,

F\, [x] �v′ ∀ψ iff (∀[y] ∈ X ′)([x]Q′[y] ⇒ F\, [y] �v′ ψ)
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iff (∀y ∈ X)(xQy ⇒ F\, [y] �v′ ψ)

iff (∀y ∈ X)(xQy ⇒ F, y �v ψ
\)

iff F, x �v �Fψ
\

iff F, x �v (∀ψ)\.

Suppose ϕ = ∃ψ. As noted in Remark 2.7, Q′ and EQ′ coincide on R′-upsets. Since the set

{[y] | F\, [y] �v′ ψ} is an R′-upset, by the induction hypothesis, we have

F\, [x] �v′ ∃ψ iff (∃[y] ∈ X ′)([x]EQ′ [y] & F\, [y] �v′ ψ)

iff [x] ∈ EQ′ [{[y] | F\, [y] �v′ ψ}]

iff [x] ∈ Q′[{[y] | F\, [y] �v′ ψ}]

iff x ∈ Q[{y | F\, [y] �v′ ψ}]

iff x ∈ Q[{y | F, y �v ψ
\}]

iff (∃y ∈ X)(yQx & F, y �v ψ
\)

iff F, x �v �Pψ
\

iff F, x �v (∃ψ)\.

(3). The proof is analogous to that of Proposition 2.31(3).

(4). Let G = (X,R,Q) be an MIPC-frame. It is clear from the definition of TS4-frames

that G is also a TS4-frame. Since R is a partial order, ∼ is the identity relation. Therefore,

G is isomorphic to G\.

Theorem 3.21. The translation (−)\ of MIPC into TS4 is full and faithful; that is,

MIPC ` ϕ iff TS4 ` ϕ\.
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Proof. To prove faithfulness, suppose that TS4 0 ϕ\. By Theorem 3.11, there is a TS4-frame

F such that F 2 ϕ\. By Proposition 3.20, F\ is an MIPC-frame and F\ 2 ϕ. Thus, by

Theorem 2.13, MIPC 0 ϕ. For fullness, if MIPC 0 ϕ, then there is an MIPC-frame G such

that G 2 ϕ. By Proposition 3.20(4), G is also a TS4-frame and it is isomorphic to G\.

Therefore, G\ 2 ϕ. Proposition 3.20(3) then yields that G 2 ϕ\. Thus, TS4 0 ϕ\.

3.4 Translations into MS4.t

In Sections 2.3 and 3.3 we described full and faithful translations of MIPC into MS4 and

TS4, respectively. This yields the following diagram.

MS4

MIPC

TS4

( )t

( )\

There does not appear to be a natural way to translate MS4 into TS4 or vice versa. The

aim of this section is to define a new tense system and show that both MS4 and TS4 embed

fully and faithfully into it, thus completing the above diagram.

3.4.1 MS4.t

Let LT∀ be the propositional language with the tense modalities 2F and 2P , and the monadic

modality ∀. In order to stress that the language LT∀ is different from ML and TS4, we use

different symbols for the tense modalities.

Definition 3.22. The tense MS4, denoted MS4.t, is the least classical multimodal logic

containing the S4.t-axioms for 2F and 2P , the S5-axioms for ∀, the left commutativity
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axiom

2F∀p→ ∀2Fp,

and closed under modus ponens, substitution, and the necessitation rules (for 2F , 2P , and

∀).

Algebraic semantics for MS4.t is given by MS4.t-algebras.

Definition 3.23. An MS4.t-algebra is a tuple B = (B,2F ,2P ,∀) where (B,2F ,2P ) is an

S4.t-algebra and (B,2F ,∀) is an MS4-algebra.

As usual, the Lindenbaum-Tarski construction yields that MS4.t is sound and complete

with respect to MS4.t-algebras.

As with S4 and S4.t, we have that MS4.t-frames are simply MS4-frames. A valuation on

an MS4.t-frame F = (X,R,E) is a map v associating to each propositional letter of LT∀ a

subset of F. The boolean connectives are interpreted as usual, and

F, x �v 2Fϕ iff (∀y ∈ X)(xRy ⇒ y �v ϕ),

F, x �v 2Pϕ iff (∀y ∈ X)(yRx⇒ y �v ϕ),

F, x �v ∀ϕ iff (∀y ∈ X)(xEy ⇒ y �v ϕ).

Since both MS4 and S4.t can be axiomatized by Sahlqvist formulas, this is also true for

MS4.t. Therefore, we have:

Theorem 3.24. MS4.t is canonical and hence is complete with respect to the relational

semantics, i.e.

MS4.t ` ϕ iff F � ϕ for every MS4.t-frame F.

In Section 3.5 we will prove that MS4.t has the fmp and hence is decidable. We conclude

this section by proving a representation theorem for MS4.t-algebras. The following lemma

is an immediate consequence of the fact that MS4.t-frames are the same as MS4-frames.
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Lemma 3.25. If F = (X,R,E) is an MS4.t-frame, then F+ := (℘(X),2R,2R˘, ∀E) is an

MS4.t-algebra.

We next prove that each MS4.t-algebra is represented as a subalgebra of F+ for some

MS4.t-frame F. For an MS4.t-algebra (B,2F ,2P ,∀) let HF , HP , and B0 be the 2F -fixpoints,

2P -fixpoints, and ∀-fixpoints, respectively. Clearly HF and HP are Heyting algebras and B0

is a boolean subalgebra of B.

Definition 3.26. Let B = (B,2F ,2P ,∀) be an MS4.t-algebra. The canonical frame of B is

the frame B+ = (XB, RB, EB) where XB is the set of ultrafilters of B, xRBy iff x∩HF ⊆ y

iff y ∩HP ⊆ x, and xEBy iff x ∩B0 = y ∩B0.

Since MS4.t-frames are MS4-frames, the next lemma is obvious.

Lemma 3.27. If B is an MS4.t-algebra, then B+ is an MS4.t-frame.

Thus, since β : B → ℘(XB) is an embedding of S4.t-algebras and MS4-algebras, we

obtain the following representation theorem for MS4.t-algebras.

Proposition 3.28. Each MS4.t-algebra B is isomorphic to a subalgebra of (B+)+.

Remark 3.29. To recover the image of the embedding of B into (B+)+ we need to endow

B+ with a Stone topology. This leads to the notion of perfect MS4.t-frames and a duality

between the categories of MS4.t-algebras and perfect MS4.t-frames. When B is finite, its

embedding into (B+)+ is an isomorphism, and hence the categories of finite MS4.t-algebras

and finite MS4.t-frames are dually equivalent.
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3.4.2 Translations of TS4 and MS4 into MS4.t

We next define two full and faithful translations (−)# : MS4 → MS4.t and (−)† : TS4 →

MS4.t. The translation of MS4 into MS4.t will reflect that MS4.t is the tense extension of

MS4.

Definition 3.30. We define the translation (−)# : MS4 → MS4.t by replacing in each

formula ϕ of L2∀ every occurrence of 2 with 2F .

Theorem 3.31. The translation (−)# of MS4 into MS4.t is full and faithful; that is,

MS4 ` ϕ iff MS4.t ` ϕ#.

Proof. By definition, MS4.t-frames are MS4-frames and valuations on MS4-frames and MS4.t-

frames coincide. The boolean connectives and monadic modality ∀ are interpreted the same

way in MS4-frames and MS4.t-frames. Also, the interpretation of 2 in MS4-frames co-

incides with the interpretation of 2F in MS4.t-frames. This implies that for each frame

F = (X,R,E), valuation v, and x ∈ X, we have F, x � ϕ iff F, x � ϕ# for every L2∀-formula

ϕ. The result then follows from the soundness and completeness of MS4 and MS4.t with

respect to their relational semantics (see Theorems 2.22 and 3.24).

Definition 3.32. Define the translation (−)† : TS4→ MS4.t by

p† = p for each propositional letter p

(−)† commutes with the boolean connectives

(2ϕ)† = 2Fϕ
†

(�Fϕ)† = 2F∀ϕ†

(�Pϕ)† = ∀2Pϕ
†.
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Definition 3.33. For an MS4.t-frame F = (X,R,E) we define F† = (X,R,QE).

Proposition 3.34.

1. If F is an MS4.t-frame, then F† is a TS4-frame.

2. Each valuation v on F is also a valuation on F† such that for each x ∈ F and ML-

formula ϕ, we have

F†, x �v ϕ iff F, x �v ϕ
†.

3. For each ML-formula ϕ, we have

F† � ϕ iff F � ϕ†.

4. For any TS4-frame G there is an MS4.t-frame F such that G = F†.

Proof. (1). Since MS4.t-frames coincide with MS4-frames, we already observed in Re-

mark 3.10(2) that F† is a TS4-frame.

(2). It is clear that if v is a valuation on F, then v is also a valuation on F†. We show

that F†, x �v ϕ iff F, x �v ϕ† by induction on the complexity of ϕ. The only nontrivial cases

are when ϕ is of the form 2ψ, �Fψ and �Pψ. Suppose ϕ = 2ψ. Then, by the induction

hypothesis,

F†, x �v 2ψ iff (∀y ∈ X)(xRy ⇒ F†, y �v ψ)

iff (∀y ∈ X)(xRy ⇒ F, y �v ψ
†)

iff F, x �v 2Fψ
†

iff F, x �v (2ψ)†.
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Suppose ϕ = �Fψ. Then, by the induction hypothesis,

F†, x �v �Fψ iff (∀y ∈ X)(xQEy ⇒ F†, y �v ψ)

iff (∀z ∈ X)(xRz ⇒ (∀y ∈ X)(zEy ⇒ F†, y �v ψ))

iff (∀z ∈ X)(xRz ⇒ (∀y ∈ X)(zEy ⇒ F, y �v ψ
†))

iff (∀z ∈ X)(xRz ⇒ F, z � ∀ψ†)

iff F, x �v 2F∀ψ†

iff F, x �v (�Fψ)†.

Suppose ϕ = �Pψ. Then, by the induction hypothesis,

F†, x �v �Pψ iff (∀y ∈ X)(yQEx ⇒ F†, y �v ψ)

iff (∀y, z ∈ X)(yRz & zEx ⇒ F†, y �v ψ)

iff (∀z ∈ X)(zEx ⇒ (∀y ∈ X)(yRz ⇒ F†, y �v ψ))

iff (∀z ∈ X)(zEx ⇒ (∀y ∈ X)(yRz ⇒ F, y �v ψ
†))

iff (∀z ∈ X)(zEx ⇒ F, z � 2Pψ
†)

iff (∀z ∈ X)(xEz ⇒ F, z � 2Pψ
†)

iff F, x �v ∀2Pψ
†

iff F, x �v (�Pψ)†.

(3). The proof that F† � ϕ iff F � ϕ† is analogous to that of Proposition 2.31(3).

(4). Let G = (X,R,Q) be a TS4-frame. As we observed in Remark 3.10, F = (X,R,EQ)

is an MS4-frame, and so an MS4.t-frame. By definition of TS4-frames we have that Q = QEQ ,

and hence G = F†.
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Theorem 3.35. The translation (−)† of TS4 into MS4.t is full and faithful; that is,

TS4 ` ϕ iff MS4.t ` ϕ†.

Proof. To prove faithfulness, suppose that MS4.t 0 ϕ†. By Theorem 3.24, there is an MS4.t-

frame F such that F 2 ϕ†. By Proposition 3.34, F† is a TS4-frame and F† 2 ϕ. Thus,

TS4 0 ϕ by Theorem 3.11. For fullness, if TS4 0 ϕ, then there is a TS4-frame G such that

G 2 ϕ. By Proposition 3.34(4), there is an MS4.t-frame F such that G is isomorphic to F†.

Therefore, F† 2 ϕ. Proposition 3.34(3) then implies that F 2 ϕ†. Thus, MS4.t 0 ϕ†.

Remark 3.36.

1. The definition of the translation (−)† : TS4 → MS4.t is suggested by the correspon-

dence between TS4-frames and MS4.t-frames. Indeed, given an MS4.t-frame F, the

relation QE in F† is the composition of R and E, and the inverse relation Q̆E is the

composition of E and R .̆ Therefore, the modalities �F and �P are translated as 2F∀

and ∀2P , respectively.

2. It is natural to consider a modification of (−)† where �P is translated as 2P∀. However,

Theorem 3.35 fails for this modification. Nevertheless, its composition with (−)\ :

MIPC→ TS4 is full and faithful, as we will see at the end of Section 3.4.3.

3.4.3 Translations of MIPC into MS4.t

We denote the composition of (−)# and (−)t by (−)t#, and the composition of (−)† and

(−)\ by (−)\†. Since we proved that all these four translations are full and faithful, we also

have that (−)t# and (−)\† are full and faithful translations of MIPC into MS4.t. We have
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thus obtained the following diagram of full and faithful translations. We next show that this

diagram is commutative up to logical equivalence in MS4.t.

MS4

MIPC MS4.t

TS4

( )#( )t

( )\ ( )†

Lemma 3.37. For any formula ϕ of L∀∃, we have

MS4.t ` ϕt# ↔ 3Pϕ
t#.

Proof. By Lemma 2.29 and Theorem 3.31, MS4.t ` ϕt# → 2Fϕ
t#. Therefore, MS4.t `

3Pϕ
t# → 3P2Fϕ

t#. The tense axiom then gives MS4.t ` 3Pϕ
t# → ϕt#. Thus, MS4.t `

ϕt# ↔ 3Pϕ
t#.

Theorem 3.38. For any L∀∃-formula χ we have

MS4.t ` χt# ↔ χ\†.

Proof. The two compositions compare as follows:

⊥t# = ⊥ ⊥\† = ⊥

pt# = 2Fp p\† = 2Fp

(ϕ ∧ ψ)t# = ϕt# ∧ ψt# (ϕ ∧ ψ)\† = ϕ\† ∧ ψ\†

(ϕ ∨ ψ)t# = ϕt# ∨ ψt# (ϕ ∨ ψ)\† = ϕ\† ∨ ψ\†

(ϕ→ ψ)t# = 2F (¬ϕt# ∨ ψt#) (ϕ→ ψ)\† = 2F (¬ϕ\† ∨ ψ\†)
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(∀ϕ)t# = 2F∀ϕt# (∀ϕ)\† = 2F∀ϕ\†

(∃ϕ)t# = ∃ϕt# (∃ϕ)\† = (�Pϕ
\)† = (¬�P¬ϕ\)†

= ¬∀2P¬ϕ\†

Thus, they are identical except the ∃-clause. Therefore, to prove that MS4.t ` χt# ↔ χ\†

it is sufficient to prove that MS4.t ` ϕt# ↔ ϕ\† implies MS4.t ` ∃ϕt# ↔ ¬∀2P¬ϕ\†.

Since MS4.t ` ¬∀2P¬ϕ\† ↔ ∃3Pϕ
\†, it is enough to prove that MS4.t ` ∃ϕt# ↔ ∃3Pϕ

\†.

From the assumption MS4.t ` ϕt# ↔ ϕ\† it follows that MS4.t ` ∃3Pϕ
t# ↔ ∃3Pϕ

\†. By

Lemma 3.37, MS4.t ` ϕt# ↔ 3Pϕ
t# and hence MS4.t ` ∃ϕt# ↔ ∃3Pϕ

t#.

As we pointed out in Remark 3.36(2), there is another natural translation of MIPC into

MS4.t.

Definition 3.39. Let (−)[ : MIPC → MS4.t be the translation that differs from (−)t# and

(−)\† only in the ∃-clause:

(∃ϕ)[ = 3P∃ϕ[.

The translation (−)[ provides a temporal interpretation of intuitionistic monadic quan-

tifiers that is similar to the translation (−)\ (see also Section 6).

Theorem 3.40. For any L∀∃-formula χ we have

MS4.t ` χ[ ↔ χt#.

Consequently, the translation (−)[ of MIPC into MS4.t is full and faithful.

Proof. The translations ()[ and (−)t# are identical except the ∃-clause. Therefore, to prove

that MS4.t ` χ[ ↔ χt# it is sufficient to prove that MS4.t ` ϕ[ ↔ ϕt# implies MS4.t `
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3P∃ϕ[ ↔ ∃ϕt#. By Lemma 3.37, MS4.t ` (∃ϕ)t# ↔ 3P (∃ϕ)t# which means MS4.t `

∃ϕt# ↔ 3P∃ϕt#. From the assumption MS4.t ` ϕ[ ↔ ϕt# it follows that MS4.t ` 3P∃ϕ[ ↔

3P∃ϕt#. Thus, MS4.t ` 3P∃ϕ[ ↔ ∃ϕt#. Since (−)t# is full and faithful, it follows that (−)[

is full and faithful as well.

As a result, we obtain the following diagram of full and faithful translations that is

commutative up to logical equivalence in MS4.t.

MS4

MIPC MS4.t

TS4

( )#( )t

( )\

( )[

( )†

3.5 Finite model property

We are now ready to prove that the logics studied in Sections 2 and 3 all have the fmp. Our

strategy is to first establish the fmp for MS4.t, and then use the full and faithful translations

to conclude that all the logics we have considered have the fmp.

Let B = (B,2F ,2P ,∀) be an MS4.t-algebra and S ⊆ B a finite subset. Then (B, ∀) is

an S5-algebra. Let (B′,∀′) be the S5-subalgebra of (B, ∀) generated by S. It is well known

(see [8]) that (B′,∀′) is finite. Define 2′F and 2′P on B′ by

2′Fa =
∨
{b ∈ B′ ∩HF | b ≤ a}

2′Pa =
∨
{b ∈ B′ ∩HP | b ≤ a}.

Definition 3.41. For an MS4.t-algebra B = (B,2F ,2P ,∀) and S ⊆ B a finite subset, let

BS denote (B′,2′F ,2
′
P ,∀′).

Lemma 3.42. BS is an MS4.t-algebra.
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Proof. By definition, (B′,∀′) is an S5-algebra. Since (B,2F ) and (B,2P ) are both S4-

algebras, a standard argument (see [91, Lem. 4.14]) shows that (B′,2′F ) and (B′,2′P ) are

also S4-algebras. We show that (B′,2′F ,2
′
P ) is an S4.t-algebra. Let HF be the algebra of

2F -fixpoints and HP the algebra of 2P -fixpoints of B. As noted in Remark 3.4, ¬ is a dual

isomorphism between HF and HP . Therefore,

3′Fa := ¬2′F¬a = ¬
∨
{b ∈ B′ ∩HF | b ≤ ¬a}

= ¬
∨
{b ∈ B′ ∩HF | a ≤ ¬b}

=
∧
{¬b | b ∈ B′ ∩HF , a ≤ ¬b}

=
∧
{c ∈ B′ ∩HP | a ≤ c}.

Since this meet is finite and 2P commutes with finite meets, we obtain

2P3
′
Fa = 2P

(∧
{c ∈ B′ ∩HP | a ≤ c}

)
=
∧
{2P c | c ∈ B′ ∩HP , a ≤ c}

=
∧
{c ∈ B′ ∩HP | a ≤ c}

= 3′Fa.

Thus, 3′Fa ∈ B′ ∩HP which yields

2′P3
′
Fa =

∨
{b ∈ B′ ∩HP | b ≤ 3′Fa} = 3′Fa.

Similarly, we have that 3′Pa =
∧
{c ∈ B′ ∩ HF | a ≤ c} from which we deduce that

2′F3
′
Pa = 3′Pa. This implies that a ≤ 2′P3

′
Fa and a ≤ 2′F3

′
Pa. Consequently, (B,2′F ,2

′
P )

is an S4.t-algebra.

It remains to show that 2′F∀′a ≤ ∀′2′Fa holds in BS. For this it is sufficient to show that

the set B′0 := B′ ∩ B0 of the ∀′-fixpoints of B′ is an S4-subalgebra of (B′,2′F ) because then

52



2′F∀′a = ∀′2′F∀′a ≤ ∀′2′Fa. Suppose that d ∈ B′0. Then 2′Fd =
∨
{b ∈ B′∩HF | b ≤ d}. Let

b ∈ B′ ∩HF . By Lemma 2.19(4), ∃b = ∃2F b = 2F∃2F b = 2F∃b. Therefore, ∃b ∈ B′ ∩HF .

Moreover, b ≤ ∃b and b ≤ d implies ∃b ≤ ∃d = d. Thus, 2′Fd =
∨
{∃b | b ∈ B′ ∩HF , b ≤ d}.

Since (B′,∀′) is an S5-algebra, B′0 is the set of ∃′-fixpoints of B′ and is closed under finite

joins. Consequently, 2′Fd ∈ B′0 and so B′0 is an S4-subalgebra of (B′,2′F ).

Theorem 3.43. MS4.t has the fmp.

Proof. It is sufficient to prove that each LT∀-formula ϕ refuted on some MS4.t-algebra is also

refuted on a finite MS4.t-algebra. Let t(x1, . . . , xn) be the term in the language of MS4.t-

algebras that corresponds to ϕ, and suppose there is an MS4.t-algebra B = (B,2F ,2P ,∀)

and a1, . . . , an ∈ B such that t(a1, . . . , an) 6= 1 in B. Let

S = {t′(a1, . . . , an) | t′ is a subterm of t}.

Then S is a finite subset of B. Therefore, by Lemma 3.42, BS = (B′,2′F ,2
′
P ,∀) is a finite

MS4.t-algebra. It follows from the definition of 2′F that, for each b ∈ B′, if 2F b ∈ B′, then

2′F b = 2F b. Similarly, if 2P b ∈ B, then 2′P b = 2P b. Thus, for each subterm t′ of t, the

computation of t′ in BS is the same as that in B. Consequently, t(a1, . . . , an) 6= 1 in BS,

and we have found a finite MS4.t-algebra refuting ϕ.

Remark 3.44. Lemma 3.42 in particular proves that BS is an S4.t-algebra. Thus, the proof

of the fmp for MS4.t contains the proof of the fmp for S4.t. In fact, MS4.t is a conservative

extension of S4.t.

We conclude this section by showing that the fmp for TS4, MS4, and MIPC is a conse-

quence of Theorem 3.43.
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Theorem 3.45.

1. TS4 has the fmp.

2. MS4 has the fmp.

3. MIPC has the fmp.

Proof. (1). Suppose that TS4 0 ϕ. By Theorem 3.35, MS4.t 0 ϕ†. Since MS4.t has the

fmp, there is a finite MS4.t-algebra B such that B 2 ϕ†. As noted in Remark 3.29, B is

isomorphic to (B+)+. This yields that B+ 2 ϕ†. By Proposition 3.34(2), (B+)† 2 ϕ. We

have thus obtained a finite TS4-frame (B+)† refuting ϕ. So ((B+)†)+ is a finite TS4-algebra

such that ((B+)†)+ 2 ϕ.

(2). Similar to the proof of (1) but uses the translation (−)# : MS4→ MS4.t instead of

(−)†.

(3). Similar to the proof of (1) but uses the composition (−)t# : MIPC→ MS4.t instead of

(−)†. Alternatively, we can use the other translations (−)\† and (−)[ of MIPC into MS4.t.
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4 Temporal interpretation of predicate intuitionistic quantifiers

We now focus on the full predicate setting. It is well known that the predicate version

of the Gödel translation is a full and faithful translation of the predicate intuitionistic logic

IQC into the predicate modal logic QS4. In this section we describe a translation of IQC

into a tense predicate logic that realizes the temporal interpretation of the intuitionistic

quantifiers as “always in the future” for ∀ and “sometime in the past” for ∃. In this setting

additional care is needed in the choice of the tense predicate logic that will be the target

of this translation. After a discussion about axiomatizations of predicate modal logics and

their relational semantics, we define the tense predicate logic Q◦S4.t. We obtain a relational

semantics for Q◦S4.t by adapting the generalized semantics studied by Corsi [41]. Using a

combination of syntactic and semantic methods, we show that the temporal translation is

full and faithful on sentences. We also discuss how to connect the results of this section to

those in Section 3. We end the first part of the thesis by mentioning some open problems

and future directions of research related to this line of research.

4.1 IQC

Let L′ be the language consisting of countably many individual variables x, y, . . ., countably

many n-ary predicate symbols P,Q, . . . (for each n ≥ 0), the logical connectives ⊥,∧,∨,→,

and the quantifiers ∀,∃.

Formulas are defined as usual by induction and are denoted with upper case letters

A,B, . . .. Let x, y be individual variables and A a formula. If x is a free variable of A and
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does not occur in the scope of ∀y or ∃y, then we denote by A(y/x) the formula obtained

from A by replacing all the free occurrences of x by y.

The following definition of the intuitionistic predicate logic IQC is taken from [60, Sec 2.6].

We point out that, unlike [60], we prefer to work with axiom schemes, and hence do not need

the inference rule of substitution.

Definition 4.1. The intuitionistic predicate logic IQC is the least set of formulas of L′

containing all substitution instances of theorems of IPC, the axiom schemes

1. ∀xA→ A(y/x) Universal instantiation (UI)

2. A(y/x)→ ∃xA

3. ∀x(A→ B)→ (A→ ∀xB) with x not free in A

4. ∀x(A→ B)→ (∃xA→ B) with x not free in B

and closed under the inference rules of Modus Ponens (MP) and

A
∀xA Generalization (Gen)

We next describe Kripke semantics for IQC (see [83, 56]).

Definition 4.2. An IQC-frame is a triple F = (W,R,D) where

• W is a nonempty set whose elements are called the worlds of F.

• R is a partial order on W .

• D is a function that associates to each w ∈ W a nonempty set Dw such that wRv

implies Dw ⊆ Dv for each w, v ∈ W . The set Dw is called the domain of w.
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Definition 4.3.

• An interpretation of L′ in F is a function I associating to each world w and n-ary

predicate symbol P an n-ary relation Iw(P ) ⊆ (Dw)n such that wRv implies Iw(P ) ⊆

Iv(P ).

• A model is a pair M = (F, I) where F is an IQC-frame and I is an interpretation in F.

• Let w be a world of F. A w-assignment is a function σ associating to each individual

variable x an element σ(x) of Dw. Note that if wRv, then σ is also a v-assignment.

• Let σ and τ be two w-assignments and x an individual variable. Then τ is said to be

an x-variant of σ if τ(y) = σ(y) for all y 6= x.

We next recall the definition of when a formula A is true in a world w of a model

M = (F, I) under the w-assignment σ, written M �σw A.

Definition 4.4.

M �σw ⊥ never

M �σw P (x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ Iw(P )

M �σw B ∧ C iff M �σw B and M �σw C

M �σw B ∨ C iff M �σw B or M �σw C

M �σw B → C iff for all v with wRv, if M �σv B, then M �σv C

M �σw ∀xB iff for all v with wRv and each v-assignment τ

that is an x-variant of σ, M �τv B

M �σw ∃xB iff there exists a w-assignment τ

that is an x-variant of σ such that M �τw B
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Definition 4.5.

• We say that A is true in a world w of M, written M �w A, if for all w-assignments σ,

we have M �σw A.

• We say that A is true in M, written M � A, if for all worlds w ∈ W , we have M �w A.

• We say that A is valid in a frame F, written F � A, if for all models M based on F,

we have M � A.

We have the following well-known completeness of IQC with respect to Kripke semantics.

Theorem 4.6 ([83]). The intuitionistic predicate logic IQC is sound and complete with respect

to Kripke semantics; that is, for each formula A,

IQC ` A iff F � A for each IQC-frame F.

4.2 Modal predicate logics

Modal predicate logics were first studied by Barcan [7] and Carnap [39] in 1940s. Algebraic

and topological semantics of modal predicate logics were studied by Rasiowa and Sikorski

(see [100]). Relational semantics of modal predicate logics was initiated by Kripke [81, 82]

in late 1950s/early 1960s. In 1959 Kripke [81] proved Kripke completeness of predicate S5.

In late 1960s Cresswell [42, 43] (see also Hughes and Cresswell [74]), Schütte [102], and

Thomason [109] proved Kripke completeness of predicate T and S4. Gabbay [55] proved

Kripke completeness of some predicate modal logics with respect to frames with constant

domains. Since then many completeness results have been obtained with respect to Kripke

semantics, but there is also a large body of incompleteness results, which is one of the
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reasons that the model theory of modal predicate logic is less advanced than that of modal

propositional logic (see, e.g., [60, 61] and the references therein).

Let K be the least normal modal propositional logic and let QK be the standard predicate

extension of K. The language L′2 of QK is the extension of L′ with the modality 2. Since

the modal logics we consider are based on the classical logic, it is sufficient to only consider

the logical connectives ⊥,→ and the quantifier ∀. The logical connectives ∧,∨,¬,↔, the

quantifier ∃, and the modality 3 are treated as usual abbreviations.

We next recall the definition of QK (see, e.g., [60, Sec 2.6], but note, as in Section 4.1,

that we work with axiom schemes instead of having the inference rule of substitution).

Definition 4.7. The modal predicate logic QK is the least set of formulas of L′2 containing

all substitution instances of theorems of K, the axiom schemes (i) and (iii) of Definition 4.1,

and closed under (MP), (Gen), and (N).

The definition of QK-frames F = (W,R,D) is the same as that of IQC-frames (see Def-

inition 4.2) with the only difference that R can be an arbitrary relation. Models are also

defined the same way, but without the requirement that wRv implies Iw(P ) ⊆ Iv(P ). The

connectives and quantifiers are interpreted at each world in the usual classical way, and

M |=σ
w 2A iff (∀v ∈ W )(wRv ⇒M |=σ

v A).

Truth and validity of formulas are defined as usual.

Kripke completeness of QK was first established by Gabbay [55, Thm. 8.5]:

Theorem 4.8. The modal predicate logic QK is sound and complete with respect to Kripke

semantics.
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The modal predicate logic QS4 is defined by adding the S4 axioms to QK. That QS4 is

sound and complete with respect to the class of QK-frames with a reflexive and transitive

accessibility relation is known since the late 1960s, see [43, 102].

The Gödel translation extends to the predicate setting as follows.

⊥t = ⊥
P (x1, . . . , xn)t = 2P (x1, . . . , xn) for each n-ary predicate symbol P

(A ∧B)t = At ∧Bt

(A ∨B)t = At ∨Bt

(A→ B)t = 2(At → Bt)

(∀xA)t = 2∀xAt

(∃xA)t = ∃xAt

The first proof of the faithfulness and fullness of the predicate Gödel translation is due

to Rasiowa and Sikorski [99] (see also [100, XI.11.5]). Schütte [102] proved it using the

relational semantics; see also [60, Sec. 2.11].

Theorem 4.9. The Gödel translation of IQC into QS4 is full and faithful; that is,

IQC ` A iff QS4 ` At.

4.3 Q◦K

The following two principles play an important role in the study of modal predicate logics.

They were first considered by Barcan [7].

∀x2A→ 2∀xA Barcan formula (BF)
2∀xA→ ∀x2A converse Barcan formula (CBF)

It is easy to see that CBF is a theorem of QK. Indeed, this follows from Theorem 4.8 and the

fact that CBF is valid in each QK-frame because the domains of QK-frames are increasing.

On the other hand, a QK-frame validates BF iff it has constant domains, meaning that wRv

implies Dw = Dv, and we have the following well-known theorem (see, e.g., [55, Thm. 9.3]):
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Theorem 4.10. The logic QK + BF is sound and complete with respect to the class of QK-

frames with constant domains.

A modal predicate logic whose Kripke frames have neither increasing nor decreasing

domains was considered already by Kripke [82]. Building on this work, Hughes and Cress-

well [73, pp. 304–309] introduced a similar predicate modal logic and proved its completeness

with respect to a generalized Kripke semantics. Fitting and Mendelsohn [54, Sec. 6.2] gave

an alternate axiomatization of this logic. Building on the work of Fitting and Mendelsohn,

Corsi [41] defined the system Q◦K.

Definition 4.11. The logic Q◦K is the least set of formulas of L′2 containing all substitution

instances of theorems of K, the axiom schemes

1. ∀y(∀xA→ A(y/x)) (UI◦)

2. ∀x(A→ B)→ (∀xA→ ∀xB)

3. ∀x∀yA↔ ∀y∀xA

4. A→ ∀xA with x not free in A

and closed under (MP), (Gen), and (N).

Remark 4.12. In Definition 4.11, replacing UI◦ with UI yields an equivalent definition of

QK (see [41, p. 1487]). Therefore, Q◦K is contained in QK.

Kripke frames for Q◦K generalize Kripke frames for QK by having two domains, inner

and outer.

Definition 4.13. A Q◦K-frame is a quadruple F = (W,R,D,U) where
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• (W,R) is a K-frame.

• D is a function that associates to each w ∈ W a set Dw. The set Dw is called the inner

domain of w.

• U is a nonempty set containing the union of all the Dw. The set U is called the outer

domain of F.

Definition 4.13 is a particular case of the frames considered by Corsi [41] where increasing

outer domains are allowed. For our purposes, taking a fixed outer domain U is sufficient.

We recall from [41] how to interpret L′2 in a Q◦K-frame F = (W,R,D,U).

Definition 4.14.

• An interpretation of L′2 in F is a function I associating to each world w and an n-ary

predicate symbol P an n-ary relation Iw(P ) ⊆ Un.

• A model is a pair M = (F, I) where F is a Q◦K-frame and I is an interpretation in F.

• An assignment in F is a function σ that associates to each individual variable an

element of U .

• If σ and τ are two assignments and x is an individual variable, τ is said to be an

x-variant of σ if τ(y) = σ(y) for all y 6= x.

• We say that an assignment σ is w-inner for w ∈ W if σ(x) ∈ Dw for each individual

variable x.

We next recall from [41] the definition of when a formula A is true in a world w of a

model M = (F, I) under the assignment σ, written M �σw A.
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Definition 4.15.

M �σw ⊥ never

M �σw P (x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ Iw(P )

M �σw B → C iff M �σw B implies M �σw C

M �σw ∀xB iff for all x-variants τ of σ with τ(x) ∈ Dw, M �τw B

M �σw 2B iff for all v such that wRv, M �σv B

Definition 4.16. A formula A is true in a model M = (F, I) at the world w ∈ W (in

symbols M �w A) if for all assignments σ, we have M �σw A. The definition of truth in a

model and validity in a frame are the same as in Definition 4.5.

We have the following completeness result for Q◦K, see [41, Thm. 1.32].

Theorem 4.17. Q◦K is sound and complete with respect to the class of Q◦K-frames.

Definition 4.18. Let F = (W,R,D,U) be a Q◦K-frame.

• We say that F has increasing inner domains if wRv impliesDw ⊆ Dv for each w, v ∈ W .

• We say that F has decreasing inner domains if wRv impliesDv ⊆ Dw for each w, v ∈ W .

• If F has both increasing and decreasing inner domains, we say that F has constant

inner domains.

The following axiom scheme guarantees nonempty inner domains (hence the abbrevia-

tion):

∀xA→ A with x not free in A (NID)

The next proposition is not difficult to verify (see, e.g., [54, Sec. 4.9] and [41, pp. 1487–

1488]).

63



Proposition 4.19. Let F = (W,R,D,U) be a Q◦K-frame.

• F validates CBF iff F has increasing inner domains.

• F validates BF iff F has decreasing inner domains.

• F validates NID iff F has nonempty inner domains.

We have the following completeness results for logics obtained by adding CBF, BF, and

NID to Q◦K (see [41, Thms. 1.30, 1.32, and Footnote 7]):

Theorem 4.20.

• Q◦K+CBF is sound and complete with respect to the class of Q◦K-frames with increasing

inner domains.

• Q◦K + CBF + BF is sound and complete with respect to the class of Q◦K-frames with

constant inner domains.

• Adding NID to the above two logics or to Q◦K yields completeness of the resulting logics

with respect to the corresponding classes of frames which have nonempty inner domains.

On the other hand, completeness of Q◦K + BF remains open (see [41, p. 1510]).

4.4 Q◦S4.t

The tense predicate logic we will translate IQC into is based on the tense propositional logic

S4.t discussed in Section 3.1. We use the temporal modalities 2F (“always in the future”)

and 2P (“always in the past”). 3F (“sometime in the future”) and 3P (“sometime in the

past”) are the usual abbreviations of ¬2F¬ and ¬2P¬.

64



Let L′T be the bimodal predicate language obtained by extending L′ with the two modal-

ities 2F and 2P .

Definition 4.21. The logic QS4.t is the least set of formulas of L′T containing all substitution

instances of theorems of S4.t, the axiom schemes (i) and (iii) of Definition 4.1, and closed

under (MP), (Gen), (NF), and (NP).

The following are temporal versions of CBF and BF:

∀x2FA→ 2F∀xA Barcan formula for 2F (BFF)

2F∀xA→ ∀x2FA converse Barcan formula for 2F (CBFF)

∀x2PA→ 2P∀xA Barcan formula for 2P (BFP)

2P∀xA→ ∀x2PA converse Barcan formula for 2P (CBFP)

The proof that QK ` CBF (see, e.g., [82, p. 88]) can be adapted to prove that QS4.t `

CBFF and QS4.t ` CBFP. It is also known that CBFF and BFP, as well as CBFP and BFF

are derivable from each other in any tense predicate logic. Therefore, all four are theorems

of QS4.t. This is reflected in the fact that QS4.t-frames have constant domains. Indeed,

QS4.t is complete with respect to this semantics (see Section 4.7). But this is problematic

for translating IQC fully into QS4.t since IQC-frames with constant domains validate the

additional axiom ∀x(A ∨B)→ (A ∨ ∀xB), where x is not free in A, which is not a theorem

of IQC (see, e.g., [56, p. 53, Cor. 8]).

Consequently, we need to work with a weaker logic than QS4.t. To this end, we introduce

the logic Q◦S4.t, which weakens QS4.t the same way Q◦K weakens QK.

Definition 4.22. The logic Q◦S4.t is the least set of formulas of L′T containing all sub-

stitution instances of theorems of S4.t, the axiom schemes (i), (ii), (iii), (iv) of Q◦K (see

Definition 4.11), NID, CBFF, and closed under (MP), (Gen), (NF), and (NP).
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Proposition 4.23. Q◦S4.t ` BFP.

Proof. We first show that Q◦S4.t ` 3F∀xB → ∀x3FB for any formula B. We consider the

proof

1. ∀x(∀xB → B)

2. ∀x2F (∀xB → B)

3. 2F (∀xB → B)→ (3F∀xB → 3FB)

4. ∀x2F (∀xB → B)→ ∀x(3F∀xB → 3FB)

5. ∀x(3F∀xB → 3FB)

6. ∀x3F∀xB → ∀x3FB

7. 3F∀xB → ∀x3FB

where 1 is an instance of UI◦; 2 is obtained from 1 by adding 2F inside ∀x by applying (NF),

CBFF, and (MP); 3 is a substitution instance of the K-theorem 2F (C → D) → (3FC →

3FD) for 2F ; 4 is obtained from 3 by first adding and then distributing ∀x inside the

implication by applying (Gen), axiom (ii) of Q◦K, and (MP); 5 follows from 2 and 4 by

(MP); 6 is obtained from 5 by distributing ∀x; and 7 follows from 6 and axiom (iv) of Q◦K.

We now prove that Q◦S4.t ` ∀x2PA→ 2P∀xA.

1. ∀x2PA→ 2P3F∀x2PA

2. 3F∀x2PA→ ∀x3F2PA

3. 2P3F∀x2PA→ 2P∀x3F2PA

4. 3F2PA→ A

5. ∀x3F2PA→ ∀xA

6. 2P∀x3F2PA→ 2P∀xA

7. ∀x2PA→ 2P∀xA

66



where 1 is an instance of axiom (i) of S4.t; 2 is an instance of 3F∀xB → ∀x3FB proved

above; 3 and 6 follow from 2 and 5 by adding and distributing 2P in the implication; 4 is an

instance of the S4.t-theorem 3F2PC → C; 5 is obtained from 4 by adding and distributing

∀x; and 7 follows from 1, 3, and 6.

Definition 4.24. A Q◦S4.t-frame is a Q◦K-frame F = (W,R,D,U) (see Definition 4.13) with

nonempty increasing inner domains whose accessibility relation is reflexive and transitive.

Models and assignments are defined as in Definition 4.14. The clauses of when a formula

A of L′T is true in a world w of a Q◦S4.t-model M = (F, I) under the assignment σ, written

M �σw A, are defined as in Definition 4.15, but we replace the 2-clause with the following

two clauses:

M �σw 2FB iff (∀v ∈ W )(wRv ⇒M �σv B)

M �σw 2PB iff (∀v ∈ W )(vRw ⇒M �σv B)

For formulas of L′T we define truth in a model and validity in a frame as in Definition 4.16.

Theorem 4.25. Q◦S4.t is sound with respect to the class of Q◦S4.t-frames; that is, for each

formula A of L′T and Q◦S4.t-frame F, from Q◦S4.t ` A it follows that F � A.

Proof. It is sufficient to show that each axiom scheme is valid in all Q◦S4.t-frames and that

each rule of inference preserves validity. This can be done by direct verification. We only

show that the axiom scheme CBFF is valid in all Q◦S4.t-frames. Let M = (F, I) be a Q◦S4.t-

model, w ∈ W , and σ an assignment. If M �σw 2F∀xA, then for all v with wRv we have

M �σv ∀xA. This implies that for each x-variant τ of σ with τ(x) ∈ Dv we have M �τv A.

Since Dw ⊆ Dv, this is in particular true for x-variants τ of σ with τ(x) ∈ Dw. Therefore, for

each x-variant τ of σ with τ(x) ∈ Dw and for each v with wRv we have M �τv A. Thus, for
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each x-variant τ of σ with τ(x) ∈ Dw, we have M �σw 2FA. Consequently, M �σw ∀x2FA.

This shows that F � 2F∀xA→ ∀x2FA for each Q◦S4.t-frame F.

On the other hand, completeness of Q◦S4.t remains an interesting open problem, which

is related to the open problem of completeness of Q◦K + BF (see Section 4.7).

4.5 The temporal translation of IQC into Q◦S4.t

In this section we prove our main result that the translation obtained by modifying the

Gödel translation on the quantifiers as follows

(∀xA)t = 2F∀xAt
(∃xA)t = 3P∃xAt

translates IQC into Q◦S4.t fully and faithfully. Our strategy is to prove faithfulness of the

translation syntactically, while fullness will be proved by semantical means, utilizing Kripke

completeness of IQC.

Our syntactic proof of faithfulness is based on a series of technical lemmas. To keep the

notation simple, we denote lists of variables by bold letters. If x = x1, . . . , xn, we write ∀x

for ∀x1 · · · ∀xn. We point out that it is a consequence of axioms (ii) and (iii) of Q◦K that

from the point of view of provability in Q◦S4.t, the order of variables in ∀x does not matter.

Lemma 4.26. If A is a formula of L′, then Q◦S4.t ` At → 2FA
t and Q◦S4.t ` 3PA

t → At.

Proof. We only prove that Q◦S4.t ` At → 2FA
t since it implies that Q◦S4.t ` 3PA

t → At.

The proof is by induction on the complexity of A. If A = ⊥, then At = ⊥ and it is clear

that Q◦S4.t ` ⊥ → 2F⊥.
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If A is either an atomic formula P (x1, . . . , xn) or of the form B → C or ∀xB, then At is

of the form 2FD. Therefore, the 4-axiom 2FD → 2F2FD implies that in all these cases

Q◦S4.t ` At → 2FA
t.

If A = ∃xB, then At = 3P∃xBt. So 2FA
t = 2F3P∃xBt and Q◦S4.t ` 3P∃xBt →

2F3P∃xBt because it is a substitution instance of the S4.t-theorem 3PC → 2F3PC.

Finally, if A = B ∧ C or A = B ∨ C, then we have At = Bt ∧ Ct or At = Bt ∨ Ct. By

inductive hypothesis, Q◦S4.t ` Bt → 2FB
t and Q◦S4.t ` Ct → 2FC

t. Since Q◦S4.t `

(2FB
t ∧ 2FC

t) → 2F (Bt ∧ Ct) and Q◦S4.t ` (2FB
t ∨ 2FC

t) → 2F (Bt ∨ Ct), we obtain

Q◦S4.t ` (Bt ∧ Ct)→ 2F (Bt ∧ Ct) and Q◦S4.t ` (Bt ∨ Ct)→ 2F (Bt ∨ Ct).

Lemma 4.27. The following are theorems of Q◦S4.t:

1. ∀y(A(y/x)→ ∃xA).

2. ∀x(A→ B)→ (A→ ∀xB) if x is not free in A.

3. ∀x(A→ B)→ (∃xA→ B) if x is not free in B.

Proof. Follows from [41, Lem. 1.3].

Lemma 4.28. For formulas A,B of L′, the following are theorems of Q◦S4.t.

1. 2F (2F∀xAt → At) if x is not free in A.

2. ∀y2F (2F∀xAt → A(y/x)t).

3. 2F (At → 3P∃xAt) if x is not free in A.

4. ∀y2F (A(y/x)t → 3P∃xAt).
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5. 2F (2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt)) if x is not free in A.

6. 2F (2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt)) if x is not free in B.

Proof. Note that x is free in A iff it is free in At, and A(y/x)t = At(y/x).

(i). We have the proof

1. ∀xAt → At

2. 2F∀xAt → At

3. 2F (2F∀xAt → At)

where 1 is an instance of NID because x is not free in At; 2 is obtained from 1 by applying

the T-axiom for 2F ; 3 is obtained from 2 by (NF).

(ii). We have the proof

1. ∀y(∀xAt → At(y/x))

2. ∀y(2F∀xAt → At(y/x))

3. ∀y2F (2F∀xAt → At(y/x))

where 1 is an instance of UI◦; 2 follows from 1 by applying the T-axiom for 2F inside ∀y; 3

is obtained from 2 by introducing 2F inside ∀y.

(iii). We have the proof

1. At → ∃xAt

2. At → 3P∃xAt

3. 2F (At → 3P∃xAt)

where 1 is an instance of C → ∃xC, with x not free in C, which is equivalent to NID; 2

follows from 1 by the T-axiom for 3P ; 3 is obtained from 2 by (NF).

(iv). We have the proof

1. ∀y(At(y/x)→ ∃xAt)
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2. ∀y(At(y/x)→ 3P∃xAt)

3. ∀y2F (At(y/x)→ 3P∃xAt)

where 1 follows from Lemma 4.27(i); 2 follows from 1 by applying the T-axiom for 3P inside

∀y; 3 is obtained from 2 by introducing 2F inside ∀y.

(v). We have the proof

1. ∀x(At → Bt)→ (At → ∀xBt)

2. ∀x2F (At → Bt)→ (At → ∀xBt)

3. 2F∀x2F (At → Bt)→ (2FA
t → 2F∀xBt)

4. 2F∀x2F (At → Bt)→ (At → 2F∀xBt)

5. 2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt)

6. 2F (2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt))

where 1 follows from Lemma 4.27(ii); 2 follows from 1 by applying the T-axiom for 2F ; 3

is obtained from 2 by adding and distributing 2F ; 4 follows from 3 by Lemma 4.26; 5 is

obtained from 4 by adding and distributing 2F and getting rid of one 2F in the antecedent

using the 4-axiom; 6 follows from 5 by (NF).

(vi). We have the proof

1. ∀x(At → Bt)→ (∃xAt → Bt)

2. ∀x(At → Bt)→ (∃x3PA
t → Bt)

3. ∀x2F (At → Bt)→ (∃x3PA
t → Bt)

4. ∀x2F (At → Bt)→ (3P∃xAt → Bt)

5. 2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt)

6. 2F (2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt))

where 1 follows from Lemma 4.27(iii); 2 follows from 1 by Lemma 4.26; 3 follows from 2 by
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applying the T-axiom for 2F ; 4 follows from 3 and the fact that Q◦S4.t ` 3P∃xAt → ∃x3PA
t

because it is a consequence of BFP; 5 is obtained from 4 by adding and distributing 2F ; 6

follows from 5 by (NF).

Lemma 4.29. If C is an instance of an axiom scheme of IQC and x is the list of free

variables in C, then Q◦S4.t ` ∀xCt.

Proof. If C is an instance of a theorem of IPC, then it follows from the faithfulness of the

Gödel translation in the propositional case that Ct is a theorem of Q◦S4.t (since 2F is an

S4-modality). Applying (Gen) to each free variable of Ct then yields a proof of ∀xCt in

Q◦S4.t. Translations of the axiom schemes of Definition 4.1 give:

(∀xA→ A(y/x))t = 2F (2F∀xAt → A(y/x)t)

(A(y/x)→ ∃xA)t = 2F (A(y/x)t → 3P∃xAt)

(∀x(A→ B)→ (A→ ∀xB))t

= 2F (2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt))

(∀x(A→ B)→ (∃xA→ B))t

= 2F (2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt))

If C is an instance of one of these axiom schemes, then we obtain a proof of ∀xCt in Q◦S4.t

by Lemma 4.28 and by applying (Gen) to the free variables of C. More precisely, for the

first axiom we use (i) of Lemma 4.28 when x is not free in A and (ii) when x is free in A.

Similarly, for the second axiom we use (iii) or (iv) of Lemma 4.28. Finally, for the third

axiom we use (v) and for the fourth axiom we use (vi) of Lemma 4.28.
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Lemma 4.30. Let A,B be formulas of L′, x the list of variables free in A→ B, y the list

of variables free in A, and z the list of variables free in B. If Q◦S4.t ` ∀x(A → B)t and

Q◦S4.t ` ∀yAt, then Q◦S4.t ` ∀zBt.

Proof. Let u be the list of variables free in A but not in B, v the list of variables free in

B but not in A, and w the list of variables free in both A and B. We then have that x

is the union of u, v, and w; y is the union of u and w; and z is the union of v and w.

Thus, we want to show that if Q◦S4.t ` ∀u∀v ∀w(A → B)t and Q◦S4.t ` ∀u∀wAt, then

Q◦S4.t ` ∀v ∀wBt. We have the proof

1. ∀u∀v ∀w2F (At → Bt)

2. ∀u∀w ∀v2F (At → Bt)

3. ∀u∀w ∀v (2FA
t → 2FB

t)

4. ∀u∀w (2FA
t → ∀v2FB

t)

5. ∀u∀w2FA
t → ∀u∀w ∀v2FB

t

6. ∀u∀wAt

7. ∀u∀w2FA
t

8. ∀u∀w ∀v2FB
t

9. ∀u∀w ∀vBt

10 ∀w ∀vBt

11 ∀v ∀wBt

where 1 and 6 are assumptions; 2 and 11 follow from 1 and 10 by switching the order

of quantification; 3 is obtained from 2 by distributing 2F inside the universal quantifiers;

4 follows from Lemma 4.27(ii) because all the variables in v are not free in 2FA
t; 5 is

obtained by distributing the universal quantifiers; 7 follows from 6 by introducing 2F inside
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the quantifiers; 8 is obtained by (MP) from 5 and 7; 9 follows from 8 by the T-axiom for

2F ; 10 follows from 9 by NID because no variable in u is free in Bt.

Lemma 4.31. Let A be a formula of L′, x a variable, y the list of variables free in A, and

z the list of variables free in ∀xA. If Q◦S4.t ` ∀yAt, then Q◦S4.t ` ∀z (∀xA)t.

Proof. If x is in y, then without loss of generality we may assume that y is z concatenated

with x. Therefore, by assumption we have Q◦S4.t ` ∀z∀xAt. If x is not in y, then y = z.

Thus, by (Gen) for x and by switching the order of quantifiers, we again obtain Q◦S4.t `

∀z∀xAt. We can then introduce 2F inside the quantifiers to obtain Q◦S4.t ` ∀z2F∀xAt

which means Q◦S4.t ` ∀z (∀xA)t.

Theorem 4.32. Let A be a formula of L′ and x1, . . . , xn the free variables of A. If IQC ` A,

then Q◦S4.t ` ∀x1 · · · ∀xnAt.

Proof. The proof is by induction on the length of the proof of A in IQC. If A is an instance

of an axiom of IQC, then the result follows from Lemma 4.29. Lemma 4.30 takes care of the

case in which the last step of the proof of A is an application of (MP). Finally, if the last

step of the proof of A is an application of (Gen) to the variable x, use Lemma 4.31.

Remark 4.33. We are prefixing the translation of A with ∀x1 · · · ∀xn because it is not true

in general that IQC ` A implies Q◦S4.t ` At. For example, if A is an instance of the universal

instantiation axiom, which is an axiom of IQC, then At is not in general a theorem of Q◦S4.t.

Definition 4.34.

• For an IQC-frame F = (W,R,D) let F = (W,R,D,U) where U =
⋃
{Dw | w ∈ W}.
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• For an IQC-model M = (F, I) let M = (F, I).

Remark 4.35.

• It is obvious that F is a Q◦S4.t-frame.

• If I is an interpretation in F, then I is also an interpretation in F because for each

n-ary predicate letter P we have Iw(P ) ⊆ Dn
w ⊆ Un. Therefore, M is well defined.

• The w-assignments in F are exactly the w-inner assignments in F.

Lemma 4.36. Let A be a formula of L′, M = (F, I) a Q◦S4.t-model, and σ an assignment

in F. If v, w ∈ W with vRw, then M �σv A
t implies M �σw A

t.

Proof. Suppose vRw and M �σv A
t. By Theorem 4.25 and Lemma 4.26, M �σv A

t → 2FA
t.

Therefore, M �σv 2FA
t, which yields M �σw A

t because vRw.

Proposition 4.37. Let A be a formula of L′, M = (F, I) an IQC-model based on an IQC-

frame F = (W,R,D), and w ∈ W .

1. For each w-assignment σ, M �σw A iff M �σw A
t.

2. If x1, . . . , xn are the free variables of A, then M �w A iff M �w ∀x1 · · · ∀xnAt.

Proof. (i). Induction on the complexity of A. Let A be an atomic formula P (x1, . . . , xn).

Since wRv implies Iw(P ) ⊆ Iv(P ) and R is reflexive, we have

M �σw P (x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ Iw(P )

iff (∀v ∈ W )(wRv ⇒ (σ(x1), . . . , σ(xn)) ∈ Iv(P ))

iff M �σw 2FP (x1, . . . , xn)

iff M �σw P (x1, . . . , xn)t
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The cases where A = ⊥, A = B ∧ C, and A = B ∨ C are straightforward.

If A = B → C, then using the inductive hypothesis, we have

M �σw B → C iff (∀v ∈ W )(wRv ⇒ (M �σv B ⇒M �σv C))

iff (∀v ∈ W )(wRv ⇒ (M �σv B
t ⇒M �σv C

t))

iff M �σw 2F (Bt → Ct)

iff M �σw (B → C)t.

If A = ∀xB, then using the inductive hypothesis, we have

M �σw ∀xB iff (∀v ∈ W )(wRv ⇒ for each v-assignment τ that is

an x-variant of σ we have M �τv B)

iff (∀v ∈ W )(wRv ⇒ for each assignment τ that is

an x-variant of σ with τ(x) ∈ Dv we have M �τv B
t)

iff M �σw 2F∀xBt

iff M �σw (∀xB)t.

If A = ∃xB, then using the inductive hypothesis, reflexivity of R, Lemma 4.36, and the

fact that vRw implies Dv ⊆ Dw, we have

M �σw ∃xB iff there is a w-assignment τ that is an x-variant of σ

such that M �τw B

iff there is an assignment τ that is an x-variant of σ

with τ(x) ∈ Dw such that M �τw B
t
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iff there is v ∈ W such that vRw and an assignment ρ that is

an x-variant of σ with ρ(x) ∈ Dv such that M �ρv B
t

iff M �σw 3P∃xBt

iff M �σw (∃xB)t.

(ii). By Definition 4.5, M �w A iff M �σw A for each w-assignment σ. As noted in

Remark 4.35, w-assignments in F are exactly the w-inner assignments in F. Therefore, by (i),

M �w A iff M �σw A
t for each w-inner assignment σ. It follows from the interpretation of the

universal quantifier in M that M �σw A
t for each w-inner assignment σ iff M �w ∀x1 · · · ∀xnAt.

Thus, M �w A iff M �w ∀x1 · · · ∀xnAt.

Theorem 4.38. Let A be a formula of L′ and x1, . . . , xn the free variables of A. If Q◦S4.t `

∀x1 · · · ∀xnAt, then IQC ` A.

Proof. Suppose IQC 0 A. Theorem 4.6 implies that there is an IQC-model M such that

M 2w A for some world w. By Proposition 4.37(ii), M 2w ∀x1 · · · ∀xnAt. Thus, Q◦S4.t 0

∀x1 · · · ∀xnAt by Theorem 4.25.

By putting Theorems 4.32 and 4.38 together we arrive at the main result of this section.

Theorem 4.39.

• For a formula A of L′ and x1, . . . , xn the free variables of A, we have

IQC ` A iff Q◦S4.t ` ∀x1 · · · ∀xnAt.

• If A is a sentence of L′, then

IQC ` A iff Q◦S4.t ` At.

77



Remark 4.40. If we allow constants in L′, Theorem 4.38 is no longer true in its current

form. Indeed, constants in IQC and Q◦S4.t behave like free variables and we would have

the problem described in Remark 4.33. However, it can be adjusted as follows. Let A be a

formula containing free variables x1, . . . , xn and constants c1, . . . cm. If A(y1/c1, . . . , ym/cm)

is the formula obtained by replacing all the constants with fresh variables y1, . . . , ym, then

IQC ` A iff Q◦S4.t ` ∀x1 · · · ∀xn∀y1 · · · ∀ymAt(y1/c1, . . . , ym/cm).

4.6 Connections with the monadic case

The translation (−)# : MS4 → MS4.t (see Section 3.4.2) suggests a translation of QS4 into

Q◦S4.t which replaces each occurrence of 2 with 2F . It is easy to see that for sentences this

translation is full and faithful. Composing it with the standard Gödel translation of IQC

into QS4 yields a translation IQC→ Q◦S4.t which is different from our temporal translation.

This translation restricts to the translation (−)t# : MIPC → MS4.t for bounded formulas.

Thus, the upper part of the following diagram we described at the end of Section 3

MS4

MIPC MS4.t

TS4

( )#( )t

( )\

( )[

( )†

extends to the predicate case.

On the other hand, we do not see a natural way to interpret the tense modalities of

the logic TS4 defined in Section 3.2 as monadic quantifiers, and hence we cannot think

of a natural predicate logic whose monadic fragment is TS4. Thus, the lower part of the

diagram does not seem to have a natural extension to the predicate case. Nevertheless, we

can consider the predicate analogue of the translation (−)\† : MIPC → MS4.t. Arguing as
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in Theorems 3.38 and 3.40 yields a translation of IQC into Q◦S4.t that is full and faithful

on sentences and coincides, up to logical equivalence in Q◦S4.t, with the other two predicate

translations we just described.

We thus obtain the following diagram in the predicate setting which is commutative up

to logical equivalence in Q◦S4.t.

QS4

IQC Q◦S4.t

( )#( )t

( )\†

( )[

4.7 Open problems and future directions of research

We end Part I by listing several open problems and possible future directions of research.

(1) It is natural to investigate the relationship between the logic MS4.t introduced in

Section 3.4.1 and predicate extensions of S4.t. We have that MS4.t is not the monadic

fragment of the predicate logic QS4.t. Indeed, as we noted in Section 4.4, the Barcan

formula and the converse Barcan formula are both theorems of QS4.t. Thus, the monadic

fragment of QS4.t contains both the left commutativity axiom 2F∀p→ ∀2Fp and the right

commutativity axiom ∀2Fp → 2F∀p. On the other hand, it is easy to see (e.g., using the

relational semantics for MS4.t defined in Section 3.4.1) that, while MS4.t contains the left

commutativity axiom, the right commutativity axiom is not provable in MS4.t. In addition,

MS4.t cannot be the monadic fragment of Q◦S4.t either since the formula ∀xA → A is not

in general provable in Q◦S4.t, whereas ∀ϕ → ϕ is provable in MS4.t. On the other hand,

call a formula ϕ (in the language of MS4.t) bounded if each occurrence of a propositional

letter in ϕ is under the scope of ∀. Bounded formulas play the same role as sentences of
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Q◦S4.t containing only one fixed variable. It is quite plausible that for a bounded formula

ϕ we have MS4.t ` ϕ iff Q◦S4.t proves the translation of ϕ where each occurrence of a

propositional letter p is replaced with the unary predicate P (x) and ∀ is replaced with ∀x

(for a similar translation of MIPC and its extensions into IQC and its extensions, see [96]). If

true, this would yield that the monadic sentences provable in Q◦S4.t are exactly the bounded

formulas ϕ provable in MS4.t. It would also yield that restricting the temporal translation

of IQC into Q◦S4.t to the monadic fragment gives the translation (−)[ : MIPC→ MS4.t (see

Section 3.4.2) for bounded formulas.

(2) It is natural to seek an axiomatization of the full monadic fragment of Q◦S4.t. Note

that in this fragment ∀ does not behave like an S5-modality. For example, ∀ϕ→ ϕ is not in

general a theorem of this fragment.

(3) The original proof of McKinsey and Tarski [92, 93] that the Gödel translation of

IPC into S4 is full and faithful was algebraic. They proved that the 2-fixpoints of each

S4-algebra form a Heyting algebra, and that each Heyting algebra arises this way. In the

monadic setting we have that the 2-fixpoints of each MS4-algebra form a monadic Heyting

algebra. Fischer-Servi [53] proved that each finite monadic Heyting algebra arises this way.

Whether this is true for every monadic Heyting algebra is still an open problem.

(4) The propositional modal logic Grz introduced by Grzegorczyk [70] is obtained by

extending the logic S4 with the grz axiom 2(2(p → 2p) → p) → p. Grzegorczyk showed

that the Gödel translation is also a full and faithful translation of IPC into Grz. Esakia’s

theorem [50] states that Grz is the largest propositional modal logic with this property.

Moreover, the Blok-Esakia theorem says that the Gödel translation gives rise to a lattice

isomorphism between the lattice of propositional intuitionistic logics extending IPC and the
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lattice of classical normal modal logics extending Grz (see, e.g, [40, p. 325]). It is natural to

ask whether analogous results hold when we replace IPC with MIPC and Grz with the monadic

logic MGrz obtained by extending MS4 with the grz axiom. We are currently investigating

this direction and the situation is more intricate than in the propositional setting. For

instance, Esakia’s theorem no longer holds in the monadic setting.

(5) As follows from Theorem 4.25, Q◦S4.t is sound with respect to the class of Q◦S4.t-

frames. However, its completeness remains an interesting open problem. The standard

Henkin construction was modified by Hughes and Cresswell [73] and Corsi [41] to obtain

completeness of Q◦K. If we adapt their technique to Q◦S4.t, we obtain two relations RF and

RP on the canonical model, one coming from 2F and the other from 2P . There does not

seem to be an obvious way to select an appropriate submodel in which the restrictions of

these two relations are inverses of each other because the outer domains of accessible worlds

are forced to increase by the construction. This problem disappears when constructing the

canonical model for QS4.t because the presence of BFF and CBFP in each world allows us

to select witnesses without expanding the domains of accessible worlds, thus yielding that

QS4.t is sound and complete with respect to the class of QS4.t-frames.

(6) The problem of completeness of Q◦S4.t seems to be closely related to the open prob-

lem, stated in [41, p. 1510], of whether Q◦K + BF is Kripke complete. It appears that

answering one of these problems could also provide an answer to the other.

(7) Finally, it is worth investigating translations of intermediate predicate logics into tense

predicate logics that are not necessarily extensions of Q◦S4.t (such as the ones considered

in [64]). Some such systems admit presheaf semantics which is more general than Kripke

semantics.
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Part II

Modal operators on rings of

continuous functions
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5 Modal operators on bounded archimedean `-algebras

In the second part of this thesis we investigate modal operators defined on rings of

continuous real-valued functions on compact Hausdorff spaces. The goal of this section is to

extend Gelfand duality (also known as Gelfand-Naimark-Stone duality) between uniformly

complete bounded archimedean `-algebras and compact Hausdorff spaces investigated in [24]

to a duality involving compact Hausdorff spaces endowed with continuous relations. In order

to do so, we first observe that a continuous relation on a compact Hausdorff space naturally

induces a modal operator on the ring of continuous functions on the space. We then provide

an axiomatization of such modal operators and introduce the notion of a modal operator

on a bounded archimedean `-algebra A. Conversely, we show that a modal operator on A

induces a continuous relation on the dual space of A. This correspondence gives rise to a

dual adjunction between the category mba` of modal bounded archimedean `-algebras and

the category KHF of compact Hausdorff spaces endowed with continuous relations. This dual

adjunction restricts to a dual equivalence on the uniformly complete algebras in mba`. We

show that this duality can be thought of as a generalization of the Jónsson-Tarski duality

between modal algebras and descriptive frames.

5.1 Gelfand duality

We start by recalling several basic definitions (see [32, Ch. XIII and onwards] or [24]). All

rings that we will consider in this thesis are commutative and unital (have multiplicative

identity 1).
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Definition 5.1. A ring A with a partial order ≤ is a lattice-ordered ring, or an `-ring for

short, provided

• (A,≤) is a lattice;

• a ≤ b implies a+ c ≤ b+ c for each c;

• 0 ≤ a, b implies 0 ≤ ab.

An `-ring A is an `-algebra if it is an R-algebra and for each 0 ≤ a ∈ A and 0 ≤ r ∈ R we

have 0 ≤ r · a.

It is well known and easy to see that the conditions defining `-algebras are equational,

and hence `-algebras form a variety. We denote this variety and the corresponding category

of `-algebras and unital `-algebra homomorphisms by `alg .

Definition 5.2. Let A be an `-ring.

• A is bounded if for each a ∈ A there is n ∈ N such that a ≤ n · 1 (that is, 1 is a strong

order unit).

• A is archimedean if for each a, b ∈ A, whenever n · a ≤ b for each n ∈ N, then a ≤ 0.

Let ba` be the full subcategory of `alg consisting of bounded archimedean `-algebras. It

is easy to see that ba` is not a variety (it is closed under neither products nor homomorphic

images).

Let A ∈ ba`. For a ∈ A, define the absolute value of a by

|a| = a ∨ (−a)
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and the norm of a by

‖a‖ = inf{λ ∈ R | |a| ≤ λ}.1

Then A is uniformly complete if the norm is complete. Let uba` be the full subcategory of

ba` consisting of uniformly complete `-algebras. We also recall from the introduction that

KHaus is the category of compact Hausdorff spaces and continuous maps.

Theorem 5.3 (Gelfand duality [62, 105]). There is a dual adjunction between ba` and

KHaus which restricts to a dual equivalence between KHaus and uba`.

uba` ba`

KHaus

YC

The functors C : KHaus → ba` and Y : ba` → KHaus establishing the dual adjunction

are defined as follows. For a compact Hausdorff space X let C(X) = C(X) be the ring

of (necessarily bounded) continuous real-valued functions on X. For a continuous map

ϕ : X → Y let C(ϕ) : C(Y ) → C(X) be defined by C(ϕ)(f) = f ◦ ϕ for each f ∈ C(Y ).

Then C : KHaus→ ba` is a well-defined contravariant functor.

For A ∈ ba`, we recall that an ideal I of A is an `-ideal if |a| ≤ |b| and b ∈ I imply

a ∈ I, and that `-ideals are exactly the kernels of `-algebra homomorphisms. Let YA be the

space of maximal `-ideals of A, whose closed sets are exactly sets of the form

Z`(I) = {M ∈ YA | I ⊆M},

where I is an `-ideal of A. The space YA is often referred to as the Yosida space of A, and

it is well known that YA ∈ KHaus (see [114]). We then set Y(A) = YA. For a morphism α

1We identify λ ∈ R with λ · 1 ∈ A. If A is nontrivial, we view R as an `-subalgebra of A.
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in ba` let Y(α) = α−1. Then Y : ba`→ KHaus is a well-defined contravariant functor, and

the functors Y and C yield a dual adjunction between ba` and KHaus (see [24, Sec. 3]).

Moreover, for X ∈ KHaus we have that εX : X → Y(C(X)) is a homeomorphism where

εX(x) = {f ∈ C(X) | f(x) = 0}.

Furthermore, for A ∈ ba` define ζA : A→ C(Y(A)) by ζA(a)(M) = λ where λ is the unique

real number satisfying a + M = λ + M . Then ζA is a monomorphism in ba` separating

points of YA. Therefore, by the Stone-Weierstrass theorem, we have:

Proposition 5.4.

1. The uniform completion of A ∈ ba` is ζA : A → C(YA). Therefore, if A is uniformly

complete, then ζA is an isomorphism.

2. uba` is a reflective subcategory of ba`, and the reflector ζ : ba` → uba` assigns to

each A ∈ ba` its uniform completion C(YA) ∈ uba`.

In the following lemma we collect several facts that will be used subsequently. Its proof

can be found in [24, Lem. 2.9].

Lemma 5.5. Let α : A→ B be a ba`-morphism.

1. Y(α) is onto iff α is 1-1 iff α is a monomorphism.

2. Y(α) is 1-1 iff α[A] is uniformly dense in B iff α is an epimorphism.

3. Y(α) is a homeomorphism iff α is a bimorphism.
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5.2 Modal operators on C(X)

We now define modal operators on rings of continuous real-valued functions on compact

Hausdorff spaces endowed with a continuous relation and study their basic properties. This

motivates the definition of a modal operator on A ∈ ba`, giving rise to the category mba`

of modal bounded archimedean `-algebras. We end the section by describing a contravariant

functor from KHF to mba`.

We recall that a Kripke frame is a pair F = (X,R) where X is a set and R is a binary

relation on X (see, e.g, [40, p. 64]). As usual, for x ∈ X we write

R[x] = {y ∈ X | xRy} and R−1[x] = {y ∈ X | yRx},

and for U ⊆ X we write

R[U ] =
⋃
{R[u] | u ∈ U} and R−1[U ] =

⋃
{R−1[u] | u ∈ U}.

Definition 5.6. [15] A binary relation R on a compact Hausdorff space X is continuous if:

1. R[x] is closed for each x ∈ X.

2. F ⊆ X closed implies R−1[F ] is closed.

3. U ⊆ X open implies R−1[U ] is open.

If R is a continuous relation on X, we call (X,R) a compact Hausdorff frame.

Compact Hausdorff frames are a generalization of both compact Hausdorff spaces and

descriptive frames from modal logic (see Definition 5.45). They are related to the Vietoris

endofunctor on KHaus.
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Definition 5.7. Let X ∈ KHaus. The Vietoris space V(X) is the set of closed subsets of X,

topologized as follows. If U is an open subset of X, let

2U = {F ∈ V(X) | F ⊆ U},

3U = {F ∈ V(X) | F ∩ U 6= ∅}.

The Vietoris topology on V(X) is the topology with the subbasis

{2U ∩3V | U, V open in X}.

We extend V to a functor as follows. If ϕ : X → Y is a continuous function between compact

Hausdorff spaces, define V(ϕ) : V(X)→ V(Y ) by V(ϕ)(F ) = ϕ(F ), the image of F under ϕ.

It is well known that V(ϕ) is a well-defined continuous map.

It follows from the definition of V(X) that R is a continuous relation on X iff the corre-

sponding map ρR : X → V(X) into the Vietoris space of X, given by

ρR(x) = R[x] = {y | xRy},

is a well-defined continuous map.

Notation 5.8. For a binary relation R on a set X let

D = {x ∈ X | R[x] 6= ∅} = R−1[X],

E = X \D = {x ∈ X | R[x] = ∅}.

The next lemma is straightforward and we omit the proof.

Lemma 5.9. If (X,R) is a compact Hausdorff frame, then D and E are both open and

closed subsets of X.
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Definition 5.10. For a compact Hausdorff frame (X,R), define 2R on C(X) by

(2Rf)(x) =


inf fR[x] if x ∈ D

1 otherwise.

Remark 5.11. We define 3R by

(3Rf)(x) =


sup fR[x] if x ∈ D

0 otherwise.

We have

3Rf = 1−2R(1− f) and 2Rf = 1−3R(1− f).

For, if x ∈ D, then

1−2R(1− f)(x) = 1− inf{1− f(y) | xRy} = 1− (1− sup{f(y) | xRy})

= sup{f(y) | xRy} = 3Rf(x).

If x ∈ E, then (1 − 2R(1 − f))(x) = 1 − 1 = 0 = (3Rf)(x). Thus, 3Rf = 1 − 2R(1 − f),

as desired. A similar argument yields 2Rf = 1−3R(1− f). Therefore, each of 2R and 3R

can be determined from the other.

Remark 5.12. Let (X,R) be a compact Hausdorff frame, f ∈ C(X), and x ∈ X with

R[x] 6= ∅. Then fR[x] is a nonempty compact subset of R, and so it has least and greatest

elements. Thus, we have

(2Rf)(x) = min fR[x] and (3Rf)(x) = max fR[x].

Lemma 5.13. Let (X,R) be a compact Hausdorff frame. If f ∈ C(X), then 2Rf ∈ C(X).

Proof. To see that 2Rf is continuous, it is sufficient to show that for each λ ∈ R, both

(2Rf)−1(λ,∞) and (2Rf)−1(−∞, λ) are open in X. We first show that (2Rf)−1(λ,∞) is
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open. Let x ∈ X and first suppose that x ∈ D. Then fR[x] is a nonempty compact subset

of R, so it has a least element. Therefore,

x ∈ (2Rf)−1(λ,∞) iff (2Rf)(x) > λ

iff min(fR[x]) > λ

iff R[x] ⊆ f−1(λ,∞)

iff x ∈ X \R−1[X \ f−1(λ,∞)].

Next suppose that x ∈ E. Then (2Rf)(x) = 1. Thus, E ⊆ (2Rf)−1(λ,∞) if λ < 1, and

E ∩ (2Rf)−1(λ,∞) = ∅ otherwise. Consequently,

(2Rf)−1(λ,∞) =
[
D ∩ (X \R−1[X \ f−1(λ,∞)])

]
∪ E if λ < 1, and

(2Rf)−1(λ,∞) = D ∩ (X \R−1[X \ f−1(λ,∞)]) if 1 ≤ λ.

Since f ∈ C(X) and R is continuous, X \R−1[X \ f−1(λ,∞)] is open. Thus, (2Rf)−1(λ,∞)

is open by Lemma 5.9.

We next show that (2Rf)−1(−∞, λ) is open. If x ∈ D, then

x ∈ (2Rf)−1(−∞, λ) iff (2Rf)(x) < λ

iff min(fR[x]) < λ

iff R[x] ∩ f−1(−∞, λ) 6= ∅

iff x ∈ R−1[f−1(−∞, λ)].

If λ ≤ 1, then E∩(2Rf)−1(−∞, λ) = ∅, and if 1 < λ, then E ⊆ (2Rf)−1(−∞, λ). Therefore,

(2Rf)−1(−∞, λ) = D ∩R−1[f−1(−∞, λ)] if λ ≤ 1, and

(2Rf)−1(−∞, λ) =
[
D ∩ (R−1[f−1(−∞, λ)])

]
∪ E if λ > 1.
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Since f ∈ C(X) andR is continuous, R−1[f−1(−∞, λ)] is open. Consequently, (2Rf)−1(−∞, λ)

is open by Lemma 5.9. This completes the proof that if f ∈ C(X), then 2Rf ∈ C(X).

In the next lemma we describe the properties of 2R. For this we recall (see, e.g., [24,

Rem 2.2]) that if A ∈ ba` and a ∈ A, then the positive and negative parts of a are defined

as

a+ = a ∨ 0 and a− = −(a ∧ 0) = (−a) ∨ 0.

Then a+, a− ≥ 0, a+ ∧ a− = 0, a = a+ − a−, and |a|= a+ + a−. This notation is standard

(see, e.g., [86, Def. 11.6]).

Lemma 5.14. Let (X,R) be a compact Hausdorff frame, f, g ∈ C(X), and λ ∈ R.

1. 2R(f ∧ g) = 2Rf ∧2Rg. In particular, 2R is order preserving.

2. 2Rλ = λ+ (1− λ)(2R0). In particular, 2R1 = 1.

3. 2R(f+) = (2Rf)+.

4. 2R(f + λ) = 2Rf + 2Rλ−2R0.

5. If 0 ≤ λ, then 2R(λf) = (2Rλ)(2Rf).

Proof. (1). For x ∈ D, we have

2R(f ∧ g)(x) = inf{(f ∧ g)(y) | y ∈ R[x]} = inf{min{f(y), g(y)} | y ∈ R[x]}

= min{inf{f(y) | y ∈ R[x]}, inf{g(y) | y ∈ R[x]}}

= min{(2Rf)(x), (2Rg)(x)}

= (2Rf ∧2Rg)(x).
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If x ∈ E, then 2R(f ∧ g)(x) = 1 = (2Rf ∧2Rg)(x). Thus, 2R(f ∧ g) = 2Rf ∧2Rg.

(2). For x ∈ D, if µ ∈ R, we have (2Rµ)(x) = inf{µ | y ∈ R[x]} = µ. From this

we see that (2Rλ)(x) = λ = (λ + (1 − λ)(2R0))(x). If x ∈ E, then (2Rλ)(x) = 1 =

(λ+ (1− λ)(2R0))(x). Thus, 2Rλ = λ = λ+ (1− λ)(2R0). Setting λ = 1 yields 2R1 = 1.

(3). For x ∈ D, we have

(2R(f+))(x) = 2R(f ∨ 0)(x) = inf{max{f(y), 0} | y ∈ R[x]}

= max{inf{f(y) | y ∈ R[x]}, 0} = max{2Rf(x), 0}

= (2Rf ∨ 0)(x) = (2Rf)+(x).

If x ∈ E, then (2R(f+))(x) = 1 = (2Rf)+(x). Thus, 2R(f+) = (2Rf)+.

(4). For x ∈ D, we have

2R(f + λ)(x) = inf{f(y) + λ | y ∈ R[x]}

= inf{f(y) | y ∈ R[x]}+ λ

= 2Rf(x) + λ.

On the other hand,

(2Rf + 2Rλ−2R0)(x) = (2Rf)(x) + (2Rλ)(x)− (2R0)(x) = (2Rf)(x) + λ.

Therefore, 2R(f + λ)(x) = (2Rf + 2Rλ − 2R0)(x). If x ∈ E, then 2R(f + λ)(x) = 1 =

(2Rf + 2Rλ−2R0)(x). Thus, 2R(f + λ) = 2Rf + 2Rλ−2R0.

(5). Let 0 ≤ λ. For x ∈ D, we have

(2Rλf)(x) = inf{λf(y) | y ∈ R[x]} = λ inf{f(y) | y ∈ R[x]}

= λ(2Rf)(x) = (2Rλ)(x)(2Rf)(x) = (2Rλ2Rf)(x).
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If x ∈ E, then (2Rλf)(x) = 1 = (2Rλ)(2Rf)(x). Thus, 2R(λf) = (2Rλ)(2Rf).

Remark 5.15. Lemma 5.14 can be stated dually in terms of 3R as follows. Let (X,R) be

a compact Hausdorff frame, f, g ∈ C(X), and λ ∈ R.

1. 3R(f ∨ g) = 3Rf ∨3Rg. In particular, 3R is order preserving.

2. 3Rλ = λ(3R1). In particular, 3R0 = 0.

3. 3R(f ∧ 1) = (3Rf) ∧ 1.

4. 3R(f + λ) = 3Rf + 3Rλ.

5. If 0 ≤ λ, then 3R(λf) = 3Rλ3Rf .

The identities (1), (3), and (5) are direct translations of the corresponding identities for

2R. However, the identities (2) and (4) are simpler. We next show why 3R affords such

simplifications.

For (2), since 3R1 = 1−2R0, by Lemma 5.14(2),

3Rλ = 1−2R(1− λ) = 1− (1− λ+ λ2R0) = λ(1−2R0) = λ3R1.

For (4), by using (4) and (2) of Lemma 5.14, we have

3R(f + λ) = 1−2R(1− (f + λ)) = 1−2R((1− f)− λ)

= 1− (2R(1− f) + 2R(−λ)−2R0) = 3Rf −2R(−λ) + 2R0

= 3Rf − (−λ+ (1 + λ)2R0) + 2R0 = 3Rf + λ(1−2R0)

= 3Rf + λ3R1 = 3Rf + 3Rλ.

In Remark 5.24 we explain why we prefer to work with 2R.
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Lemmas 5.13 and 5.14 motivate the main definition of this section.

Definition 5.16.

1. Let A ∈ ba`. We say that a unary function 2 : A → A is a modal operator on A

provided 2 satisfies the following axioms for each a, b ∈ A and λ ∈ R:

(M1) 2(a ∧ b) = 2a ∧2b.

(M2) 2λ = λ+ (1− λ)20.

(M3) 2(a+) = (2a)+.

(M4) 2(a+ λ) = 2a+ 2λ−20.

(M5) 2(λa) = (2λ)(2a) provided λ ≥ 0.

2. If 2 is a modal operator on A ∈ ba`, then we call the pair A = (A,2) a modal bounded

archimedean `-algebra.

3. Let mba` be the category of modal bounded archimedean `-algebras and unital `-

algebra homomorphisms preserving 2.

Remark 5.17. We can define 3 : A→ A dual to 2 by 3a = 1− 2(1− a) for each a ∈ A.

Then (A,3) satisfies the axioms for 3 dual to the ones for 2 in Definition 5.16(1) (see

Remark 5.15). While algebras in mba` can be axiomatized either in the signature of 2 or

3, we prefer to work with 2 for the reasons given in Remark 5.24.

Remark 5.18. If 20 = 0, then (M2), (M4), and (M5) simplify to the following:

(M2′) 2λ = λ.
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(M4′) 2(a+ λ) = 2a+ λ.

(M5′) 2(λa) = λ2a provided λ ≥ 0.

Moreover, (M2′) follows from (M4′) by setting a = 0. Furthermore, 3a = −2(−a). In

Remark 5.44 we will see that 20 = 0 holds iff the binary relation R2 on the Yosida space of

A is serial (see Definition 5.23).

The following technical lemma lists some properties of modal operators on bounded

archimedean `-algebras that will be used throughout the section.

Lemma 5.19. Let (A,2) ∈mba`, a, b ∈ A, and λ ∈ R.

1. a ≤ b implies 2a ≤ 2b.

2. 21 = 1.

3. a ≥ 0 implies 2a ≥ 0.

4. (20)(2a) = 20. In particular, 20 is an idempotent.

5. 2(a+ λ) = 2a+ λ(1−20).

6. 3a = −2(−a)(1−20).

7. (3a)(20) = 0.

Proof. (1). If a ≤ b, then a ∧ b = a. Therefore, by (M1), 2a = 2(a ∧ b) = 2a ∧ 2b. Thus,

2a ≤ 2b.

(2). This follows by substituting λ = 1 in (M2).

(3). From (M3) and a ≥ 0 we have 2a = 2(a+) = (2a)+ ≥ 0.
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(4). By (M5), 20 = 2(0a) = (20)(2a). Setting a = 0 gives (20)2 = 20.

(5). By (M4), 2(a+λ) = 2a+2λ−20. By (M2), 2λ = λ+(1−λ)(20) = λ(1−20)+20.

Therefore, 2λ−20 = λ(1−20), and so (5) follows.

(6). By (M4), (2), and (4) we have

3a = 1−2(1− a) = 1− (2(−a) + 21−20)

= −2(−a) + 20 = −2(−a) + 2(−a)20

= −2(−a)(1−20).

(7). Since 20 is an idempotent by (4), we have (1−20)20 = 0. Multiplying both sides

of (6) by 20 yields 3a20 = 0.

As follows from Lemmas 5.13 and 5.14, if (X,R) is a compact Hausdorff frame, then

(C(X),2R) ∈ mba`. We now extend this correspondence to a contravariant functor. For

this we recall the definition of a bounded morphism.

Definition 5.20.

1. A bounded morphism (or p-morphism) between Kripke frames F = (X,R) and G =

(Y, S) is a map f : X → Y satisfying f(R[x]) = S[f(x)] for each x ∈ X (equivalently,

f−1(S−1[y]) = R−1[f−1(y)] for each y ∈ Y ).

2. Let KHF be the category of compact Hausdorff frames and continuous bounded mor-

phisms.

Lemma 5.21. If F = (X,R) and G = (Y, S) are compact Hausdorff frames and ϕ : X → Y

is a continuous bounded morphism, then C(ϕ) is a morphism in mba`.
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Proof. That C(ϕ) is a ba`-morphism follows from Gelfand duality. Therefore, it is sufficient

to prove that C(ϕ) preserves 2; that is, C(ϕ)(2Sf) = 2RC(ϕ)(f) for each f ∈ C(Y ). Since

ϕ is a bounded morphism, ϕ(R[x]) = S[ϕ(x)] for each x ∈ X. Let x ∈ X and f ∈ C(Y ). If

R[x] 6= ∅, then S[ϕ(x)] 6= ∅, so

C(ϕ)(2Sf)(x) = (2Sf ◦ ϕ)(x) = (2Sf)(ϕ(x)) = inf(f(S[ϕ(x)]))

= inf(f(ϕ(R[x]))) = inf((f ◦ ϕ)(R[x])) = 2R(f ◦ ϕ)(x)

= 2R(C(ϕ)(f))(x).

If R[x] = ∅, then S[ϕ(x)] = ∅, so C(ϕ)(2Sf)(x) = (2Sf)(ϕ(x)) = 1 = (2RC(ϕ)(f))(x).

Thus, C(ϕ)(2Sf) = 2RC(ϕ)(f).

Theorem 5.22. There is a contravariant functor C : KHF→mba` which sends F = (X,R)

to C(F) = (C(X),2R) and a morphism ϕ in KF to C(ϕ).

Proof. If F ∈ KHF, then C(F) ∈ mba` by Lemmas 5.13 and 5.14. If ϕ is a morphism

in KHF, then C(ϕ) is a morphism in mba` by Lemma 5.21. It is elementary to see that

C(ψ ◦ϕ) = C(ϕ) ◦ C(ψ) and that C preserves identity morphisms. Thus, C is a contravariant

functor.

5.3 Continuous relations on the Yosida space

We now define a contravariant functor Y : mba`→ KHF.

Let A ∈ ba`. For S ⊆ A let

S+ = {a ∈ S | a ≥ 0}.

We point out that if I is an `-ideal of A, then I+ = {a+ | a ∈ I}.
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Definition 5.23. Let (A,2) ∈ mba` and let YA be the Yosida space of A. Define R2 on

YA by

xR2y iff 2y+ ⊆ x iff y+ ⊆ 2−1x.

Remark 5.24. We have that xR2y iff (∀a ≥ 0)(a + y = 0 + y ⇒ 2a + x = 0 + x). If

we work with 3 instead of 2, since 3a = 1 − 2(1 − a), the definition becomes xR2y iff

(∀b ≤ 1)(b+ y = 1 + y ⇒ 3b+ x = 1 + x). Thus, xR2y iff {1−3b | 1− b ∈ y, b ≤ 1} ⊆ x.

This more complicated definition is one reason why we prefer to work with 2 rather than

3. Another is that, as is standard in working with ordered algebras, using 2 allows us to

work with the positive cone rather than the set of elements below 1.

For a topological space X and a continuous real-valued function f on X, we recall (see,

e.g., [65, p. 14]) that the zero set of f is

Z(f) = {x ∈ X | f(x) = 0}

and the cozero set of f is

coz(f) = X \ Z(f) = {x ∈ X | f(x) 6= 0}.

In analogy with the definition above, following [24] we define the zero set of an element a of

A ∈ ba` as

Z`(a) = {x ∈ YA | a ∈ x}.

If S ⊆ A, then we set

Z`(S) =
⋂
{Z`(a) | a ∈ S} = {x ∈ YA | S ⊆ x}.
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It is easy to see that if I is the `-ideal generated by S, then Z`(S) = Z`(I). We define the

cozero set of S as

coz`(S) = YA \ Z`(S) = {x ∈ YA | S 6⊆ x}.

Thus, the family {coz`(a) | a ∈ A} constitutes a basis for the topology on YA.

Remark 5.25. Let A ∈ ba`, YA be the Yosida space of A, x ∈ YA, and a ∈ A.

1. x is a prime ideal of A because A/x ∼= R. This is a consequence of Hölder’s theorem

(see, e.g., [72, Cor. 2.7]).

2. Either a+ ∈ x or a− ∈ x. This follows from (1) and a+a− = 0.

3. a+ ∈ x and a− /∈ x iff a+ x < 0 + x (see [26, Rem. 2.11]).

4. a+ ∈ x iff a+x ≤ 0 +x. For, if a+ ∈ x, then a+x = (a+− a−) +x = −a−+x ≤ 0 +x

since a− ≥ 0. Conversely, if a + x ≤ 0 + x, then either a + x < 0 + x, in which case

a+ ∈ x by (3), or a+ x = 0 + x, in which case a ∈ x, so a+ ∈ x.

5. a− ∈ x and a+ /∈ x iff a+ x > 0 + x (see [26, Rem. 2.11]).

6. a− ∈ x iff a+ x ≥ 0 + x. The proof is similar to that of (4) but uses (5) instead of (3).

Recalling Notation 5.8, if (YA, R2) is the dual of (A,2) ∈mba`, then we denote R−12 [YA]

by DA and YA \DA by EA.

In the following lemma we list some facts about maximal `-ideals of modal bounded

archimedean `-algebras that will be used throughout the section.

Lemma 5.26. Let (A,2) ∈mba`, a ∈ A, λ ∈ R, and x ∈ YA.
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1. If x ∈ DA, then 20 ∈ x.

2. If 20 ∈ x, then 2(a+ λ) + x = (2a+ λ) + x.

3. If 20 ∈ x, then 2((a− λ)+) ∈ x iff (2a− λ)+ ∈ x.

4. If 20 ∈ x, then 3a+ x = −2(−a) + x.

5. If 20 /∈ x, then 1−2a ∈ x.

6. If 3a /∈ x, then 20 ∈ x.

Proof. (1). If x ∈ DA, then there is y with xR2y. Therefore, since 0 ∈ y+, we have 20 ∈ x.

(2). By (M4) and (M2), 2(a+λ) = 2a+λ−λ20. Therefore, if 20 ∈ x, then 2(a+λ)+x =

(2a+ λ) + x.

(3). This follows from (M3), Remark 5.25(4), and (2).

(4). Apply Lemma 5.19(6).

(5). By Lemma 5.19(4), 20 = (20)(2a), so (20)(1− 2a) = 0 ∈ x. Since 20 /∈ x and x

is a prime ideal, 1−2a ∈ x.

(6). By Lemma 5.19(7), (3a)(20) = 0 ∈ x. Since x is a prime ideal and 3a /∈ x, we

have 20 ∈ x.

The main goal of the rest of this section is to show that R2 is a continuous relation on

YA. We first show that the R2-image of any point is closed.

Proposition 5.27. R2[x] is closed for every x ∈ YA.

Proof. We prove that YA \ R2[x] is open for every x ∈ YA. Let y /∈ R2[x], so y+ * 2−1x.

Therefore, there is a ≥ 0 such that a ∈ y and 2a /∈ x. By Lemma 5.19(3), 2a ≥ 0,
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so there is 0 ≤ λ ∈ R such that (2a − λ) + x > 0 + x but (a − λ) + y < 0 + y. By

Remark 5.25(3), (a− λ)− /∈ y and (2a− λ)+ /∈ x. Thus, y ∈ coz`((a− λ)−), and it remains

to show that coz`((a− λ)−)∩R2[x] = ∅. Suppose not. Then there is z such that xR2z and

z ∈ coz`((a − λ)−). Since z is a prime ideal and (a − λ)− /∈ z, we have (a − λ)+ ∈ z (see

Remark 5.25(2)). But xR2z means z+ ⊆ 2−1x, so 20,2((a− λ)+) ∈ x. Thus, by (M3) and

Lemma 5.26(3), (2a − λ)+ ∈ x, hence (2a − λ) + x ≤ 0 + x. The obtained contradiction

proves that coz`((a− λ)−) ∩R2[x] = ∅, completing the proof.

We now show that the inverse image under R2 of a closed subset is closed. We first need

some technical lemmas whose proofs are among the most challenging of the thesis.

Lemma 5.28.

1. Let X ∈ KHaus and g, h ∈ C(X). If Z(g) ⊆ intZ(h), then there is f ∈ C(X) such

that h = gf .

2. Let A ∈ ba` and a, s ∈ A. If Z`(a) ⊆ intZ`(s), then there is f ∈ C(YA) such that

ζA(s) = ζA(a)f in C(YA).

Proof. (1) This is the first part of [65, Prob. 1D, p. 21].

(2) Observe that for each t ∈ A we have Z`(t) = Z(ζA(t)). Therefore, Z`(a) ⊆ intZ`(s)

implies Z(ζA(a)) ⊆ intZ(ζA(s)). Now apply (1).

Lemma 5.29. Let (A,2) ∈mba`, x ∈ YA, S = (A \2−1x)+, and a ∈ (2−1x)+.

1.
⋂
{coz`(s) | s ∈ S} =

⋂
{coz`(s) | s ∈ S} for every s ∈ S.

2. coz`(s) ∩ Z`(a) 6= ∅ for every s ∈ S.
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3. The family {coz`(s) ∩ Z`(a) | s ∈ S} has the finite intersection property.

Proof. (1). The inclusion ⊆ is clear. To prove the reverse inclusion, it is sufficient to prove

that for each s ∈ S there is t ∈ S such that coz`(t) ⊆ coz`(s). Since s ∈ S, there is ε ∈ R

with 2s+ x > ε+ x > 0 + x. Set t = (s− ε)+. Then t ≥ 0 and

2t = 2(s− ε)+ = (2(s− ε))+

by (M3). If 2t ∈ x, then 2(s − ε) + x ≤ 0 + x, so 2s − ε(1 − 20) + x ≤ 0 + x by

Lemma 5.19(5). We have 20 ∈ x by Lemma 5.26(5) as 2a ∈ x, so 2s − ε ≤ 0 + x, and

hence 2s + x ≤ ε + x. The obtained contradiction shows 2t /∈ x, so t ∈ S. Let z ∈ Z`(s).

Then z ∈ ζA(s)−1(−ε, ε), an open set. But ζA(s)−1(−ε, ε) ⊆ Z`(t) by definition of t and

Remark 5.25(3), so Z`(s) ⊆ intZ`(t). Thus, coz`(t) ⊆ coz`(s).

(2). Note that coz`(s) ∩ Z`(a) 6= ∅ means that Z`(a) * intZ`(s). We argue by contra-

diction. Suppose Z`(a) ⊆ intZ`(s). Then by Lemma 5.28(2), there is f ∈ C(YA) such that

ζA(s) = ζA(a)f in C(YA). Since C(YA) is the uniform completion of A (see Proposition 5.4),

there is a sequence {bn} ⊆ A such that f = lim ζA(bn). It is well known that multiplication

is continuous with respect to the norm, so we have lim ζA(abn) = ζA(a)f = ζA(s). Since

s ∈ S, there is ε > 0 such that 2s+x > ε+x, so (2s− ε) +x > 0 +x. There is N such that

||s− abN || < ε. Therefore, s < abN + ε. Take 0 < λ ∈ R such that bN ≤ λ. Then s < λa+ ε,

so by Lemmas 5.19(1), 5.26(2), and axiom (M5),

2s+ x ≤ 2(λa+ ε) + x = (2(λa) + ε) + x = (2λ2a+ ε) + x.

But 2a ∈ x, so 2s+ x ≤ ε+ x, contradicting ε+ x < 2s+ x.

(3). We first show that the intersection of any two members of the family contains another

member of the family. Let s, t ∈ S. Then 2s,2t /∈ x. Since x is a maximal `-ideal, A/x ∼= R
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is totally ordered, so

(2s ∧2t) + x = min{2s+ x,2t+ x} 6= 0 + x,

and hence 2s ∧ 2t /∈ x. By (M1), this shows 2(s ∧ t) /∈ x, which gives s ∧ t ∈ S. Since

coz`(s ∧ t) = coz`(s) ∩ coz`(t), we have:

(coz`(s) ∩ Z`(a)) ∩ (coz`(t) ∩ Z`(a)) = coz`(s) ∩ coz`(t) ∩ Z`(a)

⊇ coz`(s) ∩ coz`(t) ∩ Z`(a)

= coz`(s ∧ t) ∩ Z`(a).

Because s ∧ t ∈ S, we have that coz`(s ∧ t) ∩ Z`(a) is in the family. An easy induction

argument then completes the proof because every element of the family is nonempty by

(2).

Proposition 5.30. Let (A,2) ∈mba` and x ∈ YA. Then (2−1x)+ =
⋃
{y+ | y ∈ R2[x]}.

Proof. The right-to-left inclusion follows from the definition of R2. For the left-to-right

inclusion, let a ∈ (2−1x)+. By Lemma 5.29(1),

⋂
{coz`(s) ∩ Z`(a) | s ∈ S} =

⋂
{coz`(s) ∩ Z`(a) | s ∈ S}.

By Lemma 5.29(3) and compactness of YA, this intersection is nonempty. Therefore, there

is y ∈
⋂
{coz`(s) ∩ Z`(a) | s ∈ S}. This means that a ∈ y and y ∩ S = ∅, so y+ ⊆ 2−1x.

Thus, a is contained in some y ∈ R2[x], completing the proof.

Lemma 5.31. Let (A,2) ∈mba`.

1. R−12 [Z`(a)] = Z`(2a) for every 0 ≤ a ∈ A.

2. DA = Z`(20).
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Proof. (1). Let x ∈ R−12 [Z`(a)]. Then there is y ∈ YA such that xR2y and a ∈ y. Therefore,

a ∈ y+ ⊆ 2−1x. Thus, 2a ∈ x, and so x ∈ Z`(2a).

For the other inclusion, let x ∈ Z`(2a). Since 2a ∈ x and 2a ≥ 0, we have a ∈ (2−1x)+.

By Proposition 5.30, there is y ∈ YA such that xR2y and a ∈ y. Thus, x ∈ R−12 [Z`(a)].

(2). This follows from (1) by setting a = 0 and using YA = Z`(0).

We will use Lemma 5.31 to prove that R−12 [F ] is closed for each closed subset F of YA.

For this we require Esakia’s lemma, which is an important tool in modal logic (see, e.g., [40,

Sec. 10.3]). The original statement is for descriptive frames, but it has a straightforward

generalization to the setting of compact Hausdorff frames (see [15, Lem. 2.17]). We call a

relation R on a compact Hausdorff space X point-closed if R[x] is closed for each x ∈ X.

Lemma 5.32 (Esakia’s lemma). If R is a point-closed relation on a compact Hausdorff space

X, then for each nonempty down-directed family {Fi | i ∈ I} of closed subsets of X we have

R−1
[⋂
{Fi | i ∈ I}

]
=
⋂
{R−1[Fi] | i ∈ I}.

Remark 5.33. Let (A,2) ∈ mba` and S be a set of nonnegative elements of A closed

under addition. Since 0 ≤ a, b ≤ a + b for each a, b ∈ S, we have Z`(a + b) ⊆ Z`(a) ∩ Z`(b).

Thus, {Z`(a) | a ∈ S} is a down-directed family of closed subsets of YA. Then, by Esakia’s

lemma and Lemma 5.31, we have:

R−12 [Z`(S)] = R−12

[⋂
{Z`(a) | a ∈ S}

]
=
⋂
{R−12 [Z`(a)] | a ∈ S}

=
⋂
{Z`(2a) | a ∈ S} = Z`(2S).

In particular, for an `-ideal I, since Z`(I) = Z`(I
+), we have

R−12 Z`(I) = R−12 Z`(I
+) =

⋂
{Z`(2a) | a ∈ I+}.
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Proposition 5.34. R−12 [F ] is closed for every closed subset F of YA.

Proof. Since F is a closed subset of YA, there is an `-ideal I such that F = Z`(I). By

Remark 5.33,

R−12 Z`(I) =
⋂
{Z`(2a) | a ∈ I+},

which is closed because it is an intersection of closed subsets of YA.

It now remains to show that the inverse image under R2 of an open subset is open. We

first need some lemmas.

Lemma 5.35. If 3a ∈ x and xR2y, then a+ ∈ y.

Proof. Suppose that xR2y and a+ /∈ y. Then a+ y > 0 + y, so there is 0 < λ ∈ R such that

a+y = λ+y. Therefore, λ−a ∈ y, so (λ−a)+ ∈ y. Since y+ ⊆ 2−1x, we have (2(λ−a))+ ∈ x

by (M3), so (λ + 2(−a))+ ∈ x by Lemma 5.26(3). Thus, (λ + 2(−a)) + x ≤ 0 + x, so

λ + x ≤ −2(−a) + x, and hence λ + x ≤ 3a + x by Lemma 5.26(4). Since λ + x > 0 + x,

this shows 3a /∈ x.

Lemma 5.36. R−12 [coz`(a)] = coz`(3a) for every 0 ≤ a ∈ A.

Proof. For the left-to-right inclusion, suppose x /∈ coz`(3a). Then 3a ∈ x. Consider

y ∈ R2[x]. By Lemma 5.35, a = a+ ∈ y, so y /∈ coz`(a). Therefore, x /∈ R−12 [coz`(a)].

For the right-to-left inclusion, let x ∈ coz`(3a). Then 3a /∈ x, so 20 ∈ x by Lemma 5.26(6).

Therefore, by Lemma 5.26(4), 0 + x 6= 3a+ x = −2(−a) + x, and hence 2(−a) /∈ x. Since

−a ≤ 0, we have 2(−a) + x ≤ 20 + x = 0 + x. Thus, there is λ ∈ R with λ < 0 and

2(−a) + x = λ+ x, so 2(−a)− λ ∈ x. By Lemma 5.26(3), we have

2((−a− λ)+) ∈ x iff (2(−a)− λ)+ ∈ x.
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Consequently, by Proposition 5.30,

(−a− λ)+ ∈ (2−1x)+ =
⋃
{y+ | y ∈ R2[x]}.

Hence, there is y ∈ R2[x] such that (−a− λ)+ ∈ y. This means that (−a− λ) + y ≤ 0 + y,

so a+y ≥ −λ+y > 0 +y. Therefore, a /∈ y, and so y ∈ coz`(a). Thus, x ∈ R−12 [coz`(a)].

Proposition 5.37. R−12 [U ] is open for every open subset U of YA.

Proof. Open subsets of YA are of the form coz`(I) =
⋃
{coz`(a) | a ∈ I} for some `-ideal

I. Since coz`(I) =
⋃
{coz`(a) | a ∈ I, a ≥ 0} and R−12 commutes with arbitrary unions, by

Lemma 5.36, we have

R−12 coz`(I) = R−12

⋃
{coz`(a) | a ∈ I, a ≥ 0}

=
⋃
{R−12 coz`(a) | a ∈ I, a ≥ 0}

=
⋃
{coz`(3a) | a ∈ I, a ≥ 0},

which is open because it is a union of open subsets of YA.

Putting Propositions 5.27, 5.34, and 5.37 together yields:

Theorem 5.38. If (A,2) ∈mba`, then (YA, R2) ∈ KHF.

We finish the section by showing how to extend the object correspondence of Theo-

rem 5.38 to a contravariant functor Y : mba`→ KHF.

Lemma 5.39. Let (A,2), (B,2) ∈ mba` and α : A → B be a morphism in mba`. Then

Y(α) : YB → YA is a bounded morphism.

Proof. For each y ∈ YA, we have that y+ and α(y+) are sets of nonnegative elements closed

under addition, so Remark 5.33 applies. Therefore, since Z(y+) = {y},

(Y(α))−1(R−12 [y]) = (Y(α))−1(R−12 [Z`(y
+)]) = (Y(α))−1(Z`(2y

+))
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and

Z`(2α(y+)) = R−12 [Z`(α(y+))].

The definition of Y(α) shows that (Y(α))−1(Z`(2y
+)) = Z`(α(2y+)) and (Y(α))−1(Z`(y

+)) =

Z`(α(y+)). This yields

(Y(α))−1(R−12 [y]) = (Y(α))−1(Z`(2y
+)) = Z`(α(2y+))

and

R−12 [(Y(α))−1(y)] = R−12 [(Y(α))−1(Z`(y
+))] = R−12 [Z`(α(y+))] = Z`(2α(y+)).

Consequently, since α commutes with 2, we have (Y(α))−1(R−12 [y]) = R−12 [(Y(α))−1(y)],

which proves that Y(α) is a bounded morphism.

Putting Theorem 5.38 and Lemma 5.39 together and remembering that Y : ba`→ KHaus

is a contravariant functor yields:

Theorem 5.40. Y : mba`→ KHF is a contravariant functor.

5.4 Duality

We are now ready to prove our main results. We show that Y and C yield a dual adjunc-

tion between mba` and KHF which restricts to a dual equivalence between the category of

uniformly complete members of mba` and KHF.

Definition 5.41. Let muba` be the full subcategory of mba` consisting of uniformly com-

plete objects of mba`.

Proposition 5.42. muba` is a reflective subcategory of mba`.
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Proof. By Proposition 5.4(2), uba` is a reflective subcategory of ba`, where ζ : ba`→ uba`

is the reflector. We first show that ζA is an mba`-morphism for each (A,2) ∈ mba`. Let

x ∈ YA. Recall that

(2R2
ζA(a))(x) =


inf{ζA(a)(y) | xR2y} if x ∈ DA

1 otherwise.

If x ∈ EA, then 20 /∈ x by Lemma 5.31(2). Therefore, 2a − 1 ∈ x by Lemma 5.26(5),

and hence ζA(2a)(x) = 1 = (2R2
ζA(a))(x). Now let x ∈ DA. Then (2R2

ζA(a))(x) =

inf{ζA(a)(y) | xR2y}. We first show that ζA(2a)(x) ≤ inf{ζA(a)(y) | xR2y}. Suppose that

xR2y, so y+ ⊆ 2−1x. Let λ = ζA(a)(y). Then a − λ ∈ y, so (a − λ)+ ∈ y+ ⊆ 2−1x, and

hence (2a− λ)+ ∈ x iff 2((a− λ)+) ∈ x by Lemma 5.26(3). Therefore,

0 = ζA((2a− λ)+)(x) = max{ζA(2a)(x)− λ, 0},

so ζA(2a)(x)− λ ≤ 0, and hence ζA(2a)(x) ≤ λ = ζA(a)(y). Thus,

ζA(2a)(x) ≤ inf{ζA(a)(y) | xR2y}.

We next show that ζA(2a)(x) ≥ inf{ζA(a)(y) | xR2y}. Let µ = ζA(2a)(x). We have

2((a− µ)+) ∈ x iff (2a− µ)+ ∈ x. Therefore, by Proposition 5.30,

(a− µ)+ ∈ (2−1x)+ =
⋃
{y+ | xR2y}.

So there is y ∈ R2[x] such that (a− µ)+ ∈ y. Thus, max{ζA(a)(y)− µ, 0} = 0. This yields

ζA(a)(y)− µ ≤ 0, and so ζA(a)(y) ≤ µ = ζA(2a)(x). Consequently,

inf{ζA(a)(y) | y ∈ R2[x]} ≤ ζA(2a)(x).

108



Next, let α : A → B be an mba`-morphism with B ∈ muba`. Since α is a ba`-

morphism, there is a unique ba`-morphism γ : C(YA) → B, given by γ = ζ−1B ◦ C(Y(α)),

such that γ ◦ ζA = α.

A C(YA)

B C(YB)

ζA

α C(Y(α))
γ

ζ−1
B

As we saw in the paragraph above, ζB is an mba`-morphism. Also, C(Y(α)) : C(YA) →

C(YB) is an mba`-morphism by Lemmas 5.39 and 5.21. Therefore, γ is an mba`-morphism,

concluding the proof.

Theorem 5.43. The functors Y : mba` → KHF and C : KHF → mba` yield a dual

adjunction of the categories, which restricts to a dual equivalence between muba` and KHF.

muba` mba`

KHF

YC

Proof. By Gelfand duality, the functors Y : ba`→ KHaus and C : KHaus→ ba` yield a dual

adjunction between ba` and KHaus that restricts to a dual equivalence between uba` and

KHaus. The natural transformations are given by ζ : 1ba` → C ◦ Y and ε : 1KHaus → Y ◦ C

where we recall from Section 5.1 that εX : X → XC(X) is defined by

εX(x) = Mx = {f ∈ C(X) | f(x) = 0}.

Therefore, it is sufficient to show that ζA is a morphism in mba` for each (A,2) ∈ mba`

and that εX is a bounded morphism for each (X,R) ∈ KHF. We showed in the proof of

Proposition 5.42 that ζA(2a) = 2R2
ζA(a) for each (A,2) ∈ mba` and a ∈ A. Thus, ζA is

a morphism in mba`, and hence it remains to show that xRy iff εX(x)R2RεX(y) for each

(X,R) ∈ KHF.
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To see this recall that εX(x)R2RεX(y) means that M+
y ⊆ 2−1R Mx. First suppose that

xRy and f ∈ M+
y . Then f(y) = 0 and f ≥ 0. We have (2Rf)(x) = inf{f(z) | xRz} = 0.

Therefore, 2Rf ∈ Mx, and so f ∈ 2−1R Mx. This gives M+
y ⊆ 2−1R Mx. Next suppose that

x 6Ry, so y /∈ R[x]. If R[x] = ∅, then (2R0)(x) = 1, so 0 ∈ M+
y but 2R0 /∈ Mx, yielding

M+
y 6⊆ 2−1R Mx. On the other hand, if R[x] 6= ∅, since R[x] is closed, by Urysohn’s lemma

there is f ≥ 0 such that f(y) = 0 and f(R[x]) = {1}. Thus, f ∈ M+
y and 2Rf /∈ Mx.

Consequently, M+
y * 2−1R Mx.

Remark 5.44. In [20, Sec. 5.2] we develop the first steps towards the correspondence theory

for mba`. Namely, we characterize algebraically what it takes for the relation R2 on YA to

satisfy additional first-order properties. We have the following results:

1. R2 is serial (i.e. R2[x] 6= ∅ for each x ∈ YA) iff 20 = 0 in A.

2. R2 is reflexive iff 2a ≤ a for each a ∈ A.

3. R2 is transitive iff 2a ≤ 2(2a(1−20) + a20) for each a ∈ A.

4. R2 is symmetric iff 32a(1−20) ≤ a(1−20) for each a ∈ A.

In the serial setting, the axioms corresponding to transitivity and symmetry simplify to

2a ≤ 22a and 32a ≤ a, which are standard transitivity and symmetry axioms in modal

logic. It would be natural to develop the correspondence theory for mba` by generalizing

these results, with the final goal towards a Sahlqvist type correspondence.
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5.5 Connections with modal algebras and descriptive frames

Theorem 5.43 generalizes Gelfand duality. We now show that it also generalizes Jónsson-

Tarski duality between modal algebra and descriptive frames. We first recall some definitions.

Definition 5.45.

1. A modal algebra is a pair A = (A,2) where A is a boolean algebra and 2 is a unary

function on A preserving finite meets (including 1). The category of modal algebras

and modal homomorphisms (boolean homomorphisms preserving 2) is denoted by MA.

2. A compact Hausdorff space is called a Stone space if its clopen subsets (i.e. the subsets

that are open and closed at the same time) form a basis.

3. A descriptive frame is a pair F = (X,R) where X is a Stone space and R is a continuous

relation on X. The category DF is the full subcategory of KHF whose objects are the

descriptive frames.

As we already pointed out, Stone duality generalizes to the following duality:

Theorem 5.46 (Jónsson-Tarski duality [48, 68]). MA is dually equivalent to DF.

The contravariant functors (−)∗ : DF → MA and (−)∗ : MA → DF establishing this

dual equivalence are defined as follows. For a descriptive Kripke frame F = (X,R) let

F∗ = (Clop(X),2R) where Clop(X) is the boolean algebra of clopen subsets of X and 2RU =

X \ R−1[X \ U ] (alternatively, 3RU = R−1[U ]). For a bounded morphism f let f ∗ = f−1.

Then (−)∗ : DF→ MA is a well-defined contravariant functor.
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For a modal algebra A = (A,2) let A∗ = (XA, R2) where XA is the set of ultrafilters of

A and

xR2y iff (∀a ∈ A)(2a ∈ x⇒ a ∈ y) iff 2−1x ⊆ y

(alternatively, xR2y iff (∀a ∈ A)(a ∈ y ⇒ 3a ∈ x) iff y ⊆ 3−1x). For a modal algebra

homomorphism h let h∗ = h−1. Then (−)∗ : MA → DF is a well-defined contravariant

functor, and the functors (−)∗ and (−)∗ yield Jónsson-Tarski duality between MA and DF.

To define a functor from mba` to MA we recall that for each commutative ring A with 1,

the idempotents of A form a boolean algebra Id(A), where the boolean operations on Id(A)

are defined as follows:

e ∧ f = ef, e ∨ f = e+ f − ef, ¬e = 1− e.

We point out that if A ∈ ba`, then the lattice operations on A restrict to those on Id(A).

Remark 5.47. We will use the following two identities of f -rings (see [32, Sec. XIII.3] and

[32, Cor. XVII.5.1]):

(a ∧ b) + c = (a+ c) ∧ (b+ c) and (a ∧ b)d = (ad) ∧ (bd) for d ≥ 0.

Lemma 5.48. If (A,2) ∈mba`, then 2 sends idempotents to idempotents.

Proof. First observe that e ∈ A is an idempotent iff 1 ∧ 2e = e. To see this, if e is an

idempotent, by Remark 5.47,

(1 ∧ 2e)− e = (1− e) ∧ e = ¬e ∧ e = 0.

Therefore, 1 ∧ 2e = e. Conversely, suppose that 1 ∧ 2e = e. Then (1 − e) ∧ e = 0 by the

same calculation. Since each A ∈ ba` is an f -ring (see, e.g., [32, Lem. XVII.5.2]), from
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(1− e)∧ e = 0 it follows that (1− e)e = 0 (see, e.g., [32, Lem. XVII.5.1]). Thus, e2 = e, and

hence e is an idempotent.

For each a ∈ A, by (M5), (M2), and Lemma 5.19(4) we have

2(2a) = 222a = (2−20)2a = (2− 220 + 20)2a = 22a(1−20) + 20.

By Lemma 5.19(3), 20 ≥ 0, so Lemma 5.19(4) and Remark 5.47 imply

(1 ∧ 22a)20 = 20 ∧ 22a20 = 20 ∧ 220 = 20.

Now suppose e is an idempotent, so e = 1 ∧ 2e. Since 20 ≤ 21 = 1, we have 1 − 20 ≥ 0.

Thus, by Remark 5.47 and the two identities just proved,

2e = 2(1 ∧ 2e) = 1 ∧2(2e)

= ((1−20) + 20) ∧2(2e)

= ((1−20) + 20) ∧ (22e(1−20) + 20)

= ((1−20) ∧ 22e(1−20)) + 20

= (1 ∧ 22e)(1−20) + 20

= (1 ∧ 22e)(1−20) + (1 ∧ 22e)20

= 1 ∧ 22e.

Therefore, 2e is idempotent.

Lemma 5.49. If (A,2) ∈mba`, then (Id(A),2) ∈ MA.

Proof. Since A ∈ ba`, we have that Id(A) is a boolean algebra. By Lemma 5.48, 2 is well de-

fined on Id(A). That 2 preserves finite meets in Id(A) follows from (M1) and Lemma 5.19(2).

Thus, (Id(A),2) ∈ MA.
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Define Id : mba`→ MA by sending (A,2) ∈mba` to (Id(A),2) ∈ MA and a morphism

A→ B in mba` to its restriction Id(A)→ Id(B). The next lemma is an easy consequence

of Lemma 5.49.

Lemma 5.50. Id : mba`→ MA is a well-defined covariant functor.

We recall (see [90] and the references therein) that a commutative ring A is clean if each

element is the sum of an idempotent and a unit.

Definition 5.51. Let cuba` be the full subcategory of uba` consisting of those A ∈ uba`

where A is clean.

Remark 5.52. By Stone duality for boolean algebras and [24, Prop. 5.20], the following

diagram commutes (up to natural isomorphism), and the functor Id yields an equivalence of

cuba` and BA.
cuba` BA

Stone

Id

(−)∗

(−)∗

(−)∗

(−)∗

Definition 5.53. Let mcuba` be the full subcategory of muba` consisting of those (A,2) ∈

muba` where A is clean.

As a corollary of Theorems 5.43, 5.46 and Remark 5.52, we obtain:

Theorem 5.54. The diagram below commutes (up to natural isomorphism) and the functor

Id yields an equivalence of mcuba` and MA.

mcuba` MA

DF

Id

(−)∗

(−)∗

(−)∗

(−)∗
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This shows that the dual equivalence between mcuba` and DF obtained by restricting

the duality stated in Theorem 5.43 is the ring-theoretic analogue of Jónsson-Tarski duality.

Therefore, we can think of the dual equivalence of Theorem 5.43 as an extension of Jónsson-

Tarski duality.
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6 The Vietoris functor and modal operators on rings of continuous functions

In this last section of the thesis we provide an alternate, more categorical treatment of

the results of the previous section. The Vietoris endofunctor V : KHaus→ KHaus restricts to

an endofunctor V : Stone→ Stone on the category of Stone spaces. It is well known that the

category DF of descriptive frames (see Definition 5.45) is isomorphic to the category Coalg(V)

of coalgebras for the Vietoris endofunctor V on Stone (for the definitions of algebra and

coalgebra for an endofunctor see Definitions 6.20 and 6.32). Abramsky [1] and Kupke, Kurz,

and Venema [84] defined the dual endofunctor H on the category BA of boolean algebras

and showed that the category Alg(H) of algebras for H is isomorphic to MA. They obtained

as a consequence that the Stone duality between BA and Stone lifts to a dual equivalence

between Alg(H) and Coalg(V). This yields an elegant new proof of Jónsson-Tarski duality.

The isomorphism between DF and the category of coalgebras for V : Stone→ Stone extends

to an isomorphism between KHF and the category of coalgebras for V : KHaus → KHaus.

We introduce an endofunctor H on the category ba` of bounded archimedean `-algebras

and show that there is a dual adjunction between the category Alg(H) of algebras for H

and the category Coalg(V) of coalgebras for the Vietoris endofunctor V on the category of

compact Hausdorff spaces. In order to define H we need to investigate the existence of

free objects in ba`. We also show that Gelfand duality lifts to a dual equivalence between

Coalg(V) and a full reflective subcategory Algu(H) of Alg(H). Then the dual adjunction

between KHF and mba` and the dual equivalence between KHF and muba` obtained in the

previous section follow from the fact that Coalg(V) and Alg(H) are isomorphic to KHF and
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mba`, respectively. We show that also Algu(H) can be thought of as a category of algebras

by introducing the endofunctor Hu on uba` and showing that Alg(Hu) is isomorphic to

Algu(H). We conclude the section by showing how our results connect with those from [84]

for the category of coalgebras of the Vietoris endofunctor on the category of Stone spaces.

We end by listing some possible future research topics and open problems related to the

topics covered in the second part of the thesis.

6.1 Free objects in ba`

Our aim is to generalize the endofunctor H : BA→ BA that is the algebraic counterpart of

V : Stone→ Stone to an endofunctor H : ba`→ ba` so that it is the algebraic counterpart

of V : KHaus → KHaus. The construction of H : BA → BA utilizes the existence of free

boolean algebras. Thus, if we want to replicate such a construction for ba`, we need to

investigate the existence of free objects in ba`.

As we pointed out in Section 5.1, `alg is a variety, hence has free algebras by Birkhoff’s

theorem (see, e.g., [38, Thm. 10.12]). Since ba` is not a subvariety of `alg , it does not follow

immediately that ba` has free algebras. In fact, we show that free algebras on sets do not

exist in ba`. In other words, we show that the forgetful functor U : ba` → Sets does not

have a left adjoint.

Lemma 6.1. Let A,B ∈ ba` and α : A→ B be a ba`-morphism. Then for each a ∈ A we

have α(|a|) = |α(a)| and ‖α(a)‖ ≤ ‖a‖.

Proof. Let a ∈ A. Then α(|a|) = α(a ∨ −a) = α(a) ∨ −α(a) = |α(a)|. Since |a| ≤ ‖a‖ and

α(r) = r for each r ∈ R, we have α(|a|) ≤ α(‖a‖) = ‖a‖. Therefore, |α(a)| = α(|a|) ≤ ‖a‖
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and hence ‖α(a)‖ ≤ ‖a‖.

Theorem 6.2. The forgetful functor U : ba`→ Sets does not have a left adjoint.

Proof. If U has a left adjoint, then for each X ∈ Sets, there is F (X) ∈ ba` and a function

f : X → F (X) such that for each A ∈ ba` and each function g : X → A there is a unique

ba`-morphism α : F (X)→ A satisfying α ◦ f = g.

X F (X)

A

f

g
α

Let X be a nonempty set. Pick x ∈ X, choose r ∈ R with r > ‖f(x)‖, and define g : X → R

by setting g(y) = r for each y ∈ X. There is a (unique) ba`-morphism α : F (X)→ R with

α ◦ f = g, so α(f(x)) = r. But if a ∈ F (X), then ‖α(a)‖ ≤ ‖a‖ by Lemma 6.1. Therefore,

r = ‖α(f(x))‖ ≤ ‖f(x)‖ < r.

The obtained contradiction proves that F (X) does not exist. Thus, U does not have a left

adjoint.

The key reason for nonexistence of a left adjoint to the forgetful functor U : ba`→ Sets

can be explained as follows. The norm on A provides a weight function on the set A, and

each ba`-morphism α respects this weight function due to the inequality ‖α(a)‖ ≤ ‖a‖. The

forgetful functor U : ba` → Sets forgets this, which is the obstruction to the existence of a

left adjoint as seen in the proof of Theorem 6.2. We repair this by working with weighted

sets.
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Definition 6.3.

1. A weight function on a set X is a function w from X into the nonnegative real numbers.

2. A weighted set is a pair (X,w) where X is a set and w is a weight function on X.

3. Let WSet be the category whose objects are weighted sets and whose morphisms are

functions f : (X1, w1)→ (X2, w2) satisfying w2(f(x)) ≤ w1(x) for each x ∈ X.

Lemma 6.4. There is a forgetful functor U : ba`→ WSet.

Proof. If A ∈ ba`, then (A, ‖ ·‖) ∈ WSet. Moreover, if α : A → B is a ba`-morphism,

then ‖α(a)‖ ≤ ‖a‖ by Lemma 6.1. Therefore, α is a WSet-morphism. Thus, the assignment

A 7→ (A, ‖·‖) defines a forgetful functor U : ba`→ WSet.

Definition 6.5. Let A ∈ `alg . Call a ∈ A bounded if there is n ∈ N with −n · 1 ≤ a ≤ n · 1.

Let A∗ be the set of bounded elements of A.

Let A ∈ `alg . If a, b ∈ A∗, then there are n,m ∈ N with −n · 1 ≤ a ≤ n · 1 and

−m · 1 ≤ b ≤ m · 1. Therefore, −(n + m) · 1 ≤ a ± b ≤ (n + m) · 1. Similar facts hold for

join, meet, and multiplication. Thus, we have the following:

Lemma 6.6. Let A ∈ `alg . Then A∗ is a subalgebra of A, and hence A∗ is a bounded

`-algebra. Therefore, if A is archimedean, then A∗ ∈ ba`.

Let A ∈ `alg . As we pointed out in Section 5.1, `-ideals are kernels of `-algebra homo-

morphisms. However, if I is an `-ideal of A, then the quotient A/I may not be archimedean

even if A is archimedean.

Definition 6.7. We call an `-ideal I of A ∈ `alg archimedean if A/I is archimedean.
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Remark 6.8. Archimedean `-ideals were studied by Banaschewski (see [4, App. 2], [5]) in

the category of archimedean f -rings.

It is easy to see that the intersection of archimedean `-ideals is archimedean. Therefore,

we may talk about the archimedean `-ideal of A generated by S ⊆ A.

Theorem 6.9. The forgetful functor U : ba`→ WSet has a left adjoint.

Proof. It is enough to show that there is a free object in ba` on each (X,w) ∈ WSet (see,

e.g., [2, Ex. 18.2(2)]). Let G(X) be the free object in `alg on X and let g : X → G(X)

be the corresponding map. We next quotient G(X) by an archimedean `-ideal I so that

−w(x) ≤ g(x) + I ≤ w(x) for each x ∈ X. Let I be the archimedean `-ideal of G(X)

generated by

{g(x)− ((g(x) ∨ −w(x)) ∧ w(x)) | x ∈ X},

and set F (X,w) = G(X)/I. Let π : G(X)→ F (X,w) be the canonical projection. Clearly

F (X,w) is an archimedean `-algebra. We show that F (X,w) is bounded, and hence that

F (X,w) ∈ ba`. Let G(X)∗ be the bounded subalgebra of G(X) (see Lemma 6.6). Since

G(X) is generated by {g(x) | x ∈ X}, we have that G(X)/I is generated by {πg(x) | x ∈ X}.

Now,

πg(x) = π((g(x) ∨ −w(x)) ∧ w(x))

since g(x)−((g(x)∨−w(x))∧w(x)) ∈ I. We have −w(x) ≤ (g(x)∨−w(x))∧w(x) ≤ w(x), so

(g(x)∨−w(x))∧w(x) ∈ G(X)∗. This shows that the generators of F (X,w) lie in π[G(X)∗],

so F (X,w) ∼= G(X)∗/(I ∩G(X)∗) is a quotient of G(X)∗. Thus, F (X,w) is bounded.

Let f : X → F (X,w) be given by f(x) = πg(x). Since f(x) = π((g(x)∨−w(x))∧w(x)),

we have −w(x) ≤ f(x) ≤ w(x), so ‖f(x)‖ ≤ w(x). Therefore, f is a WSet-morphism.
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Let A ∈ ba` and h : X → A be a WSet-morphism, so ‖h(x)‖ ≤ w(x) for each x ∈

X. There is an `-algebra homomorphism α : G(X) → A with α ◦ g = h. Because A is

archimedean, G(X)/ ker(α) is archimedean, so ker(α) is an archimedean `-ideal of G(X).

We show that I ⊆ ker(α). It suffices to show that g(x)− ((g(x) ∨ −w(x)) ∧ w(x)) ∈ ker(α)

for each x ∈ X since ker(α) is an archimedean `-ideal. Because ‖h(x)‖ ≤ w(x), we have

−w(x) ≤ h(x) ≤ w(x). Therefore,

α((g(x) ∨ −w(x)) ∧ w(x)) = (αg(x) ∨ −w(x)) ∧ w(x)

= (h(x) ∨ −w(x)) ∧ w(x)

= h(x)

= αg(x),

and hence α(g(x) − ((g(x) ∨ −w(x)) ∧ w(x))) = 0. Thus, I ⊆ ker(α), so there is a well-

defined `-algebra homomorphism α : F (X,w) → A satisfying α ◦ π = α. Consequently,

α ◦ f = α ◦ π ◦ g = α ◦ g = h.

X F (X,w)

G(X)

A

f

g

h α

π

α

It is left to show uniqueness of α. Let γ : F (X,w) → A be a ba`-morphism satisfying

γ ◦ f = h. If α′ = γ ◦ π, then α′ : G(X) → A is an `alg -morphism and we have that

α′ ◦ g = γ ◦ π ◦ g = γ ◦ f = h. Since G(X) is a free object in `alg and α′ ◦ g = h = α ◦ g,

uniqueness implies that α′ = α. From this we get γ ◦ π = α = α ◦ π. Because π is onto, we

conclude that γ = α.
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Remark 6.10. If (X,w) ∈ WSet, then ‖f(x)‖ = w(x). To see this, since w : (X,w) →

(R, |·|) is a WSet-morphism, by Theorem 6.9, there is a ba`-morphism α : F (X,w) → R

with α ◦ f = w. Because f is a weighted set morphism, by Lemma 6.1 we have w(x) =

‖α(f(x))‖ ≤ ‖f(x)‖ ≤ w(x). Thus, ‖f(x)‖ = w(x).

We next show that the Yosida space YF (X,w) of F (X,w) is homeomorphic to a power

of [0, 1], and that F (X,w) embeds into the `-algebra of piecewise polynomial functions on

YF (X,w). For a set Z we let PP ([0, 1]Z) be the `-algebra of piecewise polynomial functions on

[0, 1]Z . If Z is finite, then the definition of PP ([0, 1]Z) is standard (see, e.g., [45, p. 651]). If Z

is infinite, we define PP ([0, 1]Z) as the direct limit of {PP ([0, 1]Y ) | Y a finite subset of Z}.

It is straightforward to see that PP ([0, 1]Z) ∈ ba`.

Remark 6.11. For each A ∈ ba` and M ∈ YA it is well known that A/M ∼= R (see

Remark 5.25). This allows us to identify the Yosida space YA with the space homba`(A,R)

of ba`-morphisms from A to R, by sending α : A→ R to ker(α) and M ∈ YA to the natural

homomorphism A → R. The topology on homba`(A,R) is the subspace topology of the

product topology on RA.

Theorem 6.12. Let (X,w) ∈ WSet and let X ′ = {x ∈ X | w(x) > 0}.

1. The Yosida space of F (X,w) is homeomorphic to [0, 1]X
′
.

2. F (X,w) embeds into PP ([0, 1]X
′
).

Proof. (1). We identify YF (X,w) with homba`(F (X,w),R) as in the paragraph before the

theorem. From the universal mapping property, we see that there is a homeomorphism be-

tween homba`(F (X,w),R) and homWSet((X,w), (R, |·|)). If g : X → R is a WSet-morphism,
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then |g(x)| ≤ w(x), so −w(x) ≤ g(x) ≤ w(x). Therefore, homWSet((X,w), (R, |·|)) =

Πx∈X [−w(x), w(x)]. If x ∈ X ′, then [−w(x), w(x)] is homeomorphic to [0, 1], and if x /∈ X ′,

then [−w(x), w(x)] = {0}. Thus, Πx∈X [−w(x), w(x)] is homeomorphic to [0, 1]X
′
, and hence

YF (X,w) is homeomorphic to [0, 1]X
′
.

(2). Let ϕ : YF (X,w) → Πx∈X′ [−w(x), w(x)] be the homeomorphism from the proof of (1)

and let τx : [0, 1]→ [−w(x), w(x)] be the homeomorphism given by τx(a) = 2w(x)a−w(x). If

τ is the product of the τx, then τ : [0, 1]X
′ → Πx∈X′ [−w(x), w(x)] is a homeomorphism, and

so ρ := τ−1 ◦ϕ is a homeomorphism from YF (X,w) to [0, 1]X
′
. Therefore, C(ρ) : C(YF (X,w))→

C([0, 1]X
′
) is a ba`-isomorphism. Since F (X,w) is generated by f [X], it is sufficient to show

that C(ρ)(f(x)) ∈ PP ([0, 1]X
′
). Let x ∈ X. If w(x) = 0, then since ‖f(x)‖ = w(x) (see

Remark 6.10), f(x) = 0, so C(ρ)(f(x)) = 0 ∈ PP ([0, 1]X
′
). Suppose that w(x) > 0. Then

C(ρ)(f(x)) = 2w(x)px − w(x) ∈ PP ([0, 1]X
′
), completing the proof.

It is natural to ask whether free objects in uba` exist. The proof of Theorem 6.2 also

yields that the forgetful functor uba`→ Sets does not have a left adjoint. On the other hand,

since the forgetful functor ba`→ WSet has a left adjoint, if C is a reflective subcategory of

ba`, then the forgetful functor C → WSet also has a left adjoint (because the composition

of adjoints is an adjoint). Consequently, since uba` is a reflective subcategory of ba`, we

obtain:

Proposition 6.13. The forgetful functor U : uba`→ WSet has a left adjoint.

Since taking uniform completion is the reflector ba`→ uba`, the left adjoint of Propo-

sition 6.13 is obtained as the uniform completion of F (X,w) for each (X,w) ∈ WSet.

Remark 6.14. We finish this section by comparing our results with those in the vector
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lattice literature. Recall (see, e.g., [86, p. 48]) that the definition of a vector lattice, or Riesz

space, is the same as that of an `-algebra except that multiplication is not present in the

signature, and so in vector lattices there is no analogue of the multiplicative identity.

1. Let VL be the category of vector lattices and vector lattice homomorphisms. Then VL

is a variety, so free vector lattices exist by Birkhoff’s theorem. Therefore, the forgetful

functor U : VL→ Sets has a left adjoint.

2. Let a pointed vector lattice be a vector lattice with a prescribed element, and a pointed

vector lattice homomorphism a vector lattice homomorphism preserving the prescribed

element. The associated category pVL is a variety, so the forgetful functor U : pVL→

Sets has a left adjoint.

3. If we consider the full subcategory uVL of pVL consisting of pointed vector lattices

whose prescribed element is a strong order-unit, then Birkhoff’s theorem does not apply

since uVL is not a variety. In fact, an argument similar to the proof of Theorem 6.2

shows that the forgetful functor U : uVL→ Sets does not have a left adjoint. However,

a small modification of the proof of Theorem 6.9 yields that the forgetful functor

U : uVL→ WSet does have a left adjoint.

4. Baker [3, Thm. 2.4] showed that the free vector lattice F (X) on a set X embeds in the

vector lattice PL(RX) of piecewise linear functions on RX . In fact, Baker showed that

F (X) is isomorphic to the vector sublattice of PL(RX) generated by the projection

functions. Theorem 6.12(2) is an analogue of Baker’s result since the proof shows that

F (X,w) is isomorphic to the subalgebra of PP ([0, 1]X
′
) generated by the projection

functions. Beynon [9, Thm. 1] showed that if X is finite, then F (X) = PL(RX).
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The analogue of Beynon’s result for `-algebras is related to the famous Pierce-Birkhoff

conjecture [33, p. 68] (see also [89, 88]).

6.2 The endofunctor H : ba`→ ba`

We are now ready to define the endofunctor H on ba`. We define H(A) as a quotient of the

free bounded archimedean `-algebra F (A,wA). Although, as we pointed out in Section 6.1,

the norm is a weight function on A, we will work with a different weight function on A. We

use wA instead of the norm in order for a modal operator to be a weighted set morphism

(see Lemma 6.21).

Definition 6.15. Let A ∈ ba`. Define wA on A by wA(a) = max{‖a‖, 1}.

The next definition is motivated by the axioms defining a modal operator on A ∈ ba`

listed in Definition 5.16.

Definition 6.16. Let A ∈ ba`.

1. Let F (A) be the free object in ba` on the weighted set (A,wA), and let fA : A→ F (A)

be the associated map. We let IA be the archimedean `-ideal of F (A) generated by

the following elements, where a, b ∈ A and r ∈ R:

(a) fA(a ∧ b)− fA(a) ∧ fA(b);

(b) fA(r)− r − (1− r)fA(0);

(c) fA(a+)− fA(a)+;

(d) fA(a+ r)− fA(a)− fA(r) + fA(0);

(e) fA(ra)− fA(r)fA(a) if 0 ≤ r.
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2. Let H(A) = F (A)/IA and hA : A→ H(A) be the composition of fA with the quotient

map π : F (A)→ H(A).

3. For a ∈ A let 2a = hA(a).

Remark 6.17. The set {2a | a ∈ A} generates H(A), and these generators satisfy the

following relations that are the analogues of the axioms of a modal operator:

(F1) 2a∧b = 2a ∧2b.

(F2) 2r = r + (1− r)20.

(F3) 2a+ = (2a)
+.

(F4) 2a+r = 2a + 2r −20.

(F5) 2ra = 2r2a if 0 ≤ r.

Theorem 6.18. H is a covariant endofunctor on ba`.

Proof. Let α : A → B be a ba`-morphism. Then α : (A,wA) → (B,wB) is a weighted set

morphism since

wB(α(a)) = max{‖α(a)‖, 1} ≤ max{‖a‖, 1} = wA(a)

for each a ∈ A. Therefore, there is a unique ba`-morphism τ : F (A) → F (B) making the

following diagram commute.

A F (A)

B F (B)

fA

α τ

fB
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We show that τ(IA) ⊆ IB. From this it will follow that there is an induced ba`-morphism

τ : H(A) → H(B) such that τ ◦ hA = hB ◦ α. To see that τ(IA) ⊆ IB, it suffices to show

that the five sets of generators (a)–(e) of IA are sent to IB by τ . Since the arguments are

similar, we only give the argument for the generators of type (a).

Let a, b ∈ A. Then

τ(fA(a ∧ b)− fA(a) ∧ fA(b)) = τfA(a ∧ b)− (τfA(a) ∧ τfA(b))

= fBα(a ∧ b)− (fBα(a) ∧ fBα(b))

= fB(α(a) ∧ α(b))− (fBα(a) ∧ fBα(b))

∈ IB.

Therefore, τ induces a ba`-morphism τ : H(A) → H(B). We set H(α) = τ . It follows

that H(α) is a unique ba`-morphism that makes the following diagram commute.

A H(A)

B H(B)

hA

α H(α)

hB

It is clear that H sends identity morphisms to identity morphisms. If α : A → B and

γ : B → C are ba`-morphisms, then

H(γ ◦ α) ◦ hA = hC ◦ γ ◦ α = H(γ) ◦ hB ◦ α = H(γ) ◦ H(α) ◦ hA.

Since hA[A] generates H(A), we see that H(γ ◦ α) = H(γ) ◦ H(α). Thus, H is a covariant

functor.

Remark 6.19. From the commutativityH(α)◦hA = hB◦α it follows thatH(α)(2a) = 2α(a)

for each a ∈ A. This will be used subsequently.
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6.3 Alg(H) and mba`

In this section we show that the category Alg(H) of algebras for the endofunctor H is

isomorphic to mba`. This is the direct analogue of what happens with modal algebras,

see [84, Prop. 3.12]. We start by recalling the definition of algebras for an endofunctor (see,

e.g., [2, Def. 5.37]).

Definition 6.20. Let C be a category and T : C→ C an endofunctor on C.

1. An algebra for T is a pair (A, f) where A is an object of C and f : T (A) → A is a

C-morphism.

2. Let (A1, f1) and (A2, f2) be two algebras for T . A morphism between (A1, f1) and

(A2, f2) is a C-morphism α : A1 → A2 such that the following square is commutative.

T (A1) T (A2)

A1 A2

f1

T (α)

f2

α

3. Let Alg(T ) be the category whose objects are algebras for T and whose morphisms are

morphisms of algebras.

Lemma 6.21. If (A,2) ∈mba`, then 2 : (A,wA)→ (A, ‖ · ‖) is a weighted set morphism.

Proof. Let 0 ≤ r ∈ R. We first show that 2r ≤ max{r, 1}. If r ≤ 1, then 2r ≤ 21 = 1 by

Lemma 5.19. If 1 ≤ r, then 2r = r + (1 − r)20 ≤ r since 0 ≤ 20, again by Lemma 5.19.

Therefore, 2r ≤ max{r, 1}.

We next show that −2r ≤ 2(−r). We have 20 = 2(−r + r) = 2(−r) + 2r − 20, so

0 ≤ 220 = 2(−r) + 2r. Thus, −2r ≤ 2(−r).
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To finish the proof, let r = ‖a‖. Then −r ≤ a ≤ r, so 2(−r) ≤ 2a ≤ 2r. We have

2r ≤ max{r, 1} and −2r ≤ 2(−r). Therefore,

−max{‖a‖, 1} = −max{r, 1} ≤ −2r ≤ 2(−r) ≤ 2a ≤ 2r ≤ max{r, 1} = max{‖a‖, 1},

which implies that ‖2a‖ ≤ max{‖a‖, 1} = wA(a). Thus, 2 : (A,wA) → (A, ‖ · ‖) is a

weighted set morphism.

Lemma 6.22. There is a covariant functorM : Alg(H)→mba` sending (A, σ) to (A,2σ),

where 2σa = σ(2a) for each a ∈ A, and an Alg(H)-morphism α to itself.

Proof. Let (A, σ) ∈ Alg(H) and define 2σ on A by 2σa = σ(2a). It follows from Defini-

tion 5.16 and Remark 6.17 that (A,2σ) ∈ mba`. If α : (A, σ) → (A′, σ′) is an Alg(H)-

morphism,

H(A) A

H(A′) A′

σ

H(α) α

σ′

then

α(2σa) = ασ(2a) = σ′H(α)(2a) = σ′(2α(a)) = 2σ′α(a),

where the second-to-last equality follows from Remark 6.19. Therefore, α is an mba`-

morphism. It is clear that M preserves identity morphisms and compositions. Thus, M is

a covariant functor.

Lemma 6.23. There is a covariant functor N : mba`→ Alg(H) sending (A,2) to (A, σ2),

where σ2(2a) = 2a for each a ∈ A, and an mba`-morphism α to itself.

Proof. Since 2 is a weighted set morphism by Lemma 6.21, there is a ba`-morphism τ :

F (A) → A satisfying τfA(a) = 2a by Theorem 6.9. It is clear from Definitions 5.16(1)
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and 6.16(1) that IA ⊆ ker(τ), so there is a ba`-morphism σ2 : H(A) → A satisfying

σ2(2a) = 2a. We set N (A,2) = (A, σ2) ∈ Alg(H). If α : (A,2) → (A′,2′) is an mba`-

morphism, we show that α is an Alg(H)-morphism. For this we show that the following

diagram commutes.

H(A) A

H(A′) A′

σ2

H(α) α

σ2′

By Remark 6.19, H(α)(2a) = 2α(a). Therefore, because α preserves 2, we have ασ2(2a) =

α(2a) = 2α(a) and σ2′H(α)(2a) = σ2′(2α(a)) = 2α(a). As {2a | a ∈ A} generates H(A),

we see that α ◦ σ2 = σ2′ ◦ H(α), so α is an Alg(H)-morphism. It is clear that N preserves

identity morphisms and compositions. Thus, N is a covariant functor.

Theorem 6.24. The functorsM and N yield an isomorphism of categories between Alg(H)

and mba`.

Proof. Let (A, σ) ∈ Alg(H). Then M(A, σ) = (A,2σ). Therefore, NM(A, σ) = (A, σ2σ)

where σ2σ(2a) = 2σa = σ(2a). Thus, σ2σ = σ, and so NM = 1Alg(H).

Next, let (A,2) ∈ mba`. Then N (A,2) = (A, σ2). Therefore, MN (A,2) = (A,2σ2).

But 2σ2a = σ2(2a) = 2a by the definition of σ2, so 2σ2 = 2. Thus, MN = 1mba`.

Consequently, M and N yield an isomorphism between Alg(H) and mba`.

6.4 H and the Vietoris endofunctor

In this section we relate H to the Vietoris endofunctor V : KHaus→ KHaus by showing that

the Yosida space YH(A) for A ∈ ba` is homeomorphic to V(YA).
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Lemma 6.25. Let A ∈ ba`. Define gA : A→ C(VYA) by

gA(a)(F ) =


inf ζA(a)(F ) if F 6= ∅;

1 if F = ∅.

Then gA : (A,wA)→ (C(VYA), ‖ · ‖) is a well-defined weighted set morphism.

Proof. To simplify notation we write g for gA. To see that g is well defined it is sufficient to

show that g(a) is continuous for each a ∈ A. Let r, s ∈ R with r < s. We show that

g(a)−1(r, s) =


2ζA(a)−1(r,∞) ∩3ζA(a)−1(−∞,s) if 1 /∈ (r, s)

(2ζA(a)−1(r,∞) ∩3ζA(a)−1(−∞,s)) ∪2∅ if 1 ∈ (r, s).

Suppose that 1 /∈ (r, s). Then g(a)(F ) ∈ (r, s) implies that F 6= ∅. Therefore, since F is

compact and hence ζA(a) attains its infimum on F , we have

F ∈ g(a)−1(r, s) iff r < inf ζA(a)(F ) < s

iff r < min ζA(a)(F ) < s

iff F ∈ 2ζA(a)−1(r,∞) ∩3ζA(a)−1(−∞,s).

On the other hand, if 1 ∈ (r, s), then ∅ ∈ g(a)−1(r, s). Therefore, since 2∅ = {∅}, the

calculation above yields the second case. Thus, g(a) is continuous.

It is left to show that g is a weighted set morphism. Let a ∈ A. Then wA(a) =

max{‖a‖, 1}. Suppose that ‖a‖ = r. Then −r ≤ a ≤ r. If F is nonempty, then −r ≤

inf ζA(a)(F ) ≤ r, so | inf ζA(a)(F )| ≤ r. Also, g(a)(∅) = 1. Therefore,

‖g(a)‖ = sup{|g(a)(F )| | F ∈ V(YA)} = sup{{| inf ζA(a)(F )| | F 6= ∅} ∪ {1}}

= max{sup{| inf ζA(a)(F )| | F 6= ∅}, 1} ≤ max{r, 1} = wA(a).

Thus, g : (A,wA)→ (C(VYA), ‖ · ‖) is a weighted set morphism.
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Lemma 6.26. There is a (unique) ba`-morphism τA : F (A)→ C(VYA) satisfying τA ◦fA =

gA, the image of τA is uniformly dense in C(VYA), and ker(τA) contains IA. Therefore, there

is a (unique) ba`-morphism ηA : H(A)→ C(VYA) satisfying ηA ◦ hA = gA and whose image

is uniformly dense in C(VYA).

F (A)

A H(A)

C(VYA)

π

τA
hA

gA

fA

ηA

Proof. The existence and uniqueness of τA follows from Lemma 6.25 and Theorem 6.9. To

show that the image of τA is uniformly dense, by Lemma 5.5(2) it suffices to show that

Y(τA) : YC(VYA) → YF (A) is 1-1. We may identify YF (A) with homba`(F (A),R) by Remark 6.11

and YC(VYA) with V(YA) via the homeomorphism εVYA (see Section 5.1). Under these iden-

tifications, if F ∈ VYA we let ρF ∈ homba`(F (A),R) be the corresponding homomorphism.

For a ∈ A and r ∈ R we have

ρF (fA(a)) = r iff fA(a)− r ∈ Y(τA)(εVYA(F ))

iff fA(a)− r ∈ τ−1A (εVYA(F ))

iff τAfA(a)− r ∈ εVYA(F )

iff τAfA(a)(F ) = r

iff gA(a)(F ) = r.

Therefore, ρF satisfies ρF (fA(a)) = inf ζA(a)(F ) if F 6= ∅, and ρ∅ is the function sending

each fA(a) to 1. To see that Y(τA) is 1-1, suppose that C 6= D. If one of C,D is empty, say

C = ∅, then ρCfA(0) = 1 and ρDfA(0) = inf ζA(0)(D) = 0 since D is nonempty. Therefore,
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ρC 6= ρD. If C,D 6= ∅, without loss of generality we may assume that C 6⊆ D. Then there

is y ∈ YA with y ∈ C and y /∈ D. Since YA is compact Hausdorff, there is b ∈ C(YA) with

0 ≤ b ≤ 1, b(D) = {1} and b(y) = 0. Because ζA[A] is uniformly dense in C(YA), there is

a ∈ A with ‖b− ζA(a)‖ < 1/3. Therefore, inf ζA(a)(D) ≥ 2/3 and inf ζA(a)(C) ≤ 1/3. This

shows that ρCfA(a) 6= ρDfA(a), so ρC 6= ρD. Thus, Y(τA) is 1-1, and hence the image of

τA : F (A)→ C(VYA) is uniformly dense.

To show that IA ⊆ ker(τA), it is sufficient to show that ker(τA) contains all five classes of

generators of IA. Because the proof is similar to that of Lemma 5.14, we only demonstrate (a).

Let a, b ∈ A. We have

τA(fA(a∧b)−fA(a)∧fA(b)) = τAfA(a∧b)−(τAfA(a)∧τAfA(b)) = gA(a ∧ b)−(gA(a)∧gA(b)).

Therefore, we need to prove that gA(a ∧ b) = gA(a)∧gA(b). Both sides send ∅ to 1. Suppose

that F ∈ V(YA) is nonempty. Then

gA(a ∧ b)(F ) = inf(ζA(a) ∧ ζA(b))(F ) = min(ζA(a) ∧ ζA(b))(F )

= min{(ζA(a) ∧ ζA(b))(x) | x ∈ F}

= min{min{ζA(a)(x), ζA(b)(x)} | x ∈ F}

= min{min ζA(a)(F ),min ζA(b)(F )}

= (gA(a) ∧ gA(b))(F ).

Thus, gA(a ∧ b) = gA(a) ∧ gA(b).

We next show that ηA is 1-1. For this we require a technical result, which is an analogue

of Proposition 5.30.
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Definition 6.27. Let A ∈ ba`.

1. If x ∈ YH(A), set 2−1x = {a ∈ A | 2a ∈ x}.

2. If S ⊆ A, set S+ = {s ∈ S | 0 ≤ s}.

3. Define a binary relation R2 ⊆ YH(A) × YA by setting xR2y if y+ ⊆ 2−1x for each

x ∈ YH(A) and y ∈ YA.

Proposition 6.28. Let A ∈ ba` and x ∈ YH(A). Then (2−1x)+ =
⋃
{y+ | y ∈ YA, xR2y}.

Proof. The proof is the same as that of Proposition 5.30 after replacing 2a with 2a and R2

with R2.

Lemma 6.29. Let ρ : H(A)→ R be a ba`-morphism.

1. ρ(20) ∈ {0, 1}.

2. If ρ(20) = 1, then ρ(2a) = 1 for each a ∈ A.

Proof. (1) If we set r = 0 = a in (F5) of Remark 6.17, we get 2020 = 20, so 20 is an

idempotent. Therefore, ρ(20) ∈ R is an idempotent, and hence ρ(20) ∈ {0, 1}.

(2) Suppose that ρ(20) = 1. By (F5), 202a = 20 for each a ∈ A. So applying ρ to both

sides yields ρ(2a) = 1.

Theorem 6.30. For A ∈ ba`, the Yosida space of H(A) is homeomorphic to V(YA).

Proof. The map ηA : H(A) → C(VYA) induces a continuous map Y(ηA) : YC(VYA) → YH(A).

We identify YC(VYA) with V(YA) and YH(A) with homba`(H(A),R) as in Remark 6.11. As

we saw in the proof of Lemma 6.26, under these identifications Y(ηA)(F ) := ρF satisfies

134



ρF (2a) = inf ζA(a)(F ) if F is nonempty, and ρF (2a) = 1 if F = ∅. By Lemma 6.26, the

image of ηA is uniformly dense in C(VYA). Therefore, Y(ηA) is 1-1 by Lemma 5.5(2).

To show that Y(ηA) is onto, let ρ : H(A) → R be a ba`-morphism. If ρ(20) = 1, then

ρ(2a) = 1 for all a ∈ A by Lemma 6.29(2). Therefore, ρ and ρ∅ agree on each 2a. Since

these generate H(A), we see that ρ = ρ∅. By Lemma 6.29(1), we now may assume that

ρ(20) = 0. By (F2), ρ(2r) = r for each r ∈ R. Let

S = {(a− ρ(2a))
− | a ∈ A}

and F = {M ∈ YA | S ⊆ M}, a closed subset of YA. We claim that ρ = ρF . Let a ∈ A and

y ∈ F . Then (a − ρ(2a))
− ∈ y. This means 0 ≤ (ζA(a) − ρ(2a))(y) by [26, Rem. 2.11], so

ρ(2a) ≤ ζA(a)(y). Since this is true for all y ∈ F , we see that ρ(2a) ≤ inf ζA(a)(F ). Thus, it

suffices to prove that for each a ∈ A there is y ∈ F with ζA(a)(y) = ρ(2a). In other words,

we need to show that there is y ∈ F with a− ρ(2a) ∈ y.

Let x = ker(ρ) ∈ YH(A). If a ∈ A, then

ρ(2a−ρ(2a)) = ρ(2a + 2−ρ(2a) −20) = ρ(2a)− ρ(2a) = 0

by (F4) and the fact that ρ(2r) = r. From this and (F3) we see that

ρ(2(a−ρ(2a))+) = ρ(2+
a−ρ(2a)) = ρ(2a−ρ(2a))

+ = max{ρ(2a−ρ(2a)), 0} = max{0, 0} = 0,

which implies that (a − ρ(2a))
+ ∈ 2−1x. By Proposition 6.28, there is y ∈ YA with xR2y

and (a−ρ(2a))
+ ∈ y. We show that these two facts imply that y ∈ F and ρ(2a) = ζA(a)(y).

Let b ∈ A. Since A/y ∼= R, there is r ∈ R with b − r ∈ y. Therefore, (b − r)+ ∈ y, so

2(b−r)+ ∈ x. Because x = ker(ρ),

0 = ρ(2(b−r)+) = ρ(2+
b−r) = ρ(2b−r)

+ = max{ρ(2b−r), 0} = max{ρ(2b)− r, 0},
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so ρ(2b) ≤ r. Consequently, b + y = r + y ≥ ρ(2b) + y, and hence b − ρ(2b) + y ≥ 0 + y.

This implies that (b− ρ(2b))
− ∈ y. Since this is true for all b ∈ A, we get S ⊆ y, so y ∈ F .

Moreover, for b = a we have (a−ρ(2a))
+, (a−ρ(2a))

− ∈ y, so a−ρ(2a) ∈ y. By the above,

this shows that ρ = ρF , so Y(ηA) is onto. Thus, Y(ηA) is a homeomorphism.

Remark 6.31. By Theorem 6.30, YH(A) is homeomorphic to V(YA). Under this homeomor-

phism, R2 ⊆ YH(A) × YA is identified with the relation R ⊆ V(YA) × YA given by FRy iff

y ∈ F . From this it follows that R[F ] = F , and for U ⊆ YA open, we have R−1[U ] = 3U and

R−1[YA \ U ] = V(YA) \2U . Consequently, R is a continuous relation, and hence so is R2.

6.5 Alg(H) and Coalg(V)

In this section we lift the dual adjunction between ba` and KHaus to a dual adjunction

between Alg(H) and Coalg(V). We show that this dual adjunction restricts to a dual equiv-

alence between the reflective subcategory Algu(H) of Alg(H) and Coalg(V). The category

Algu(H) consists of those (A,α) ∈ Alg(H) where A ∈ uba`. This dual equivalence lifts

Gelfand duality. We conclude the section by giving an alternate description of Algu(H) as

Alg(Hu) where Hu is the endofunctor CYH : uba`→ uba`.

uba` ba` KHaus uba`H Y C

We start by recalling the definition of coalgebras (see, e.g., [112, Def. 9.1]), which is dual

to the definition of algebras for an endofunctor.

Definition 6.32.

1. A coalgebra for an endofunctor T : C → C is a pair (B, g) where B is an object of C

and g : B → T (B) is a C-morphism.
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2. A morphism between two coalgebras (B1, g1) and (B2, g2) for T is a C-morphism α :

B1 → B2 such that the following square is commutative.

B1 B2

T (B1) T (B2)

g1

α

g2

T (α)

3. Let Coalg(T ) be the category whose objects are coalgebras for T and whose morphisms

are morphisms of coalgebras.

Lemma 6.33. Let γ : A→ A′ be a ba`-morphism. Then the following diagram is commu-

tative.

A H(A) C(VYA)

A′ H(A′) C(VYA′)

hA

γ

gA

ηA

H(γ) CVY(γ)

hA′

gA′

ηA′

Proof. By Remark 6.19, H(γ)(hA(a)) = H(γ)(2a) = 2γ(a) = hA′γ(a) for each a ∈ A. This

shows that the left square of the diagram is commutative. By definition, gA = ηA ◦ hA and

gA′ = ηA′ ◦ hA′ . We next show that the outside square is commutative, from which we then

derive that the right square is commutative. Let a ∈ A and F ∈ V(YA′). If F = ∅, then

CVY(γ)(gA(a))(∅) = gA(a)(Y(γ)(∅)) = gA(a)(∅) = 1 = gA′γ(a)(∅).

If F 6= ∅, then naturality of ζ yields

CVY(γ)(gA(a))(F ) = gA(a)(Y(γ)(F )) = inf(ζA(a)Y(γ))(F )

= inf(CY(γ) ◦ ζA)(a)(F ) = inf ζA′(γ(a))(F )

= gA′γ(a)(F ).
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Thus, CVY(γ) ◦ gA = gA′ ◦ γ. Finally, to see that the right square is commutative,

CVY(γ) ◦ ηA ◦ hA = CVY(γ) ◦ gA = gA′ ◦ γ = ηA′ ◦ H(γ) ◦ hA.

This yields CVY(γ) ◦ ηA = ηA′ ◦ H(γ) because the image of hA generates H(A).

Proposition 6.34. There is a contravariant functor F : Alg(H)→ Coalg(V).

Proof. By the proof of Theorem 6.30, if A ∈ ba`, then Y(ηA) is a homeomorphism. For

(A,α) ∈ Alg(H), we set F(A,α) = (YA,Fα) ∈ Coalg(V), where

Fα = ε−1V(YA) ◦ Y(ηA)−1 ◦ Y(α) : YA → V(YA),

YA YH(A) YC(VYA) V(YA)
Y(α)

Fα

Y(ηA)−1 ε−1
V(YA)

If γ : (A,α)→ (A′, α′) is an Alg(H)-morphism

H(A) A

H(A′) A′

α

H(γ) γ

α′

then Y(γ) : YA′ → YA is a continuous map. We define F(γ) = Y(γ). To see that Y(γ) is a

Coalg(V)-morphism, we show that the following diagram is commutative.

YA′ V(YA′)

YA V(YA)

Fα′

Y(γ) VY(γ)

Fα

(1)

To see this we first show that the following diagram is commutative.

V(YA′) YC(VYA′ ) YH(A′)

V(YA) YC(VYA) YH(A)

εV(YA′ )

VY(γ)

Y(ηA′ )

YCVY(γ) YH(γ)

εV(YA) Y(ηA)

(2)

138



The left square commutes due to the naturality of ε. For the right square, YH(γ)◦Y(ηA′) =

Y(ηA′ ◦ H(γ)) and Y(ηA) ◦ YCVY(γ) = Y(CVY(γ) ◦ ηA). These are equal by Lemma 6.33.

Now, we show that Diagram (1) commutes. The equation

VY(γ) ◦ Fα′ = Fα ◦ Y(γ)

is equivalent to

VY(γ) ◦ ε−1V(YA′ ) ◦ Y(ηA′)
−1 ◦ Y(α′) = ε−1V(YA) ◦ Y(ηA)−1 ◦ Y(α) ◦ Y(γ)

and therefore is equivalent to

Y(ηA) ◦ εV(YA) ◦ VY(γ) ◦ ε−1V(YA′ ) ◦ Y(ηA′)
−1 ◦ Y(α′) = Y(α) ◦ Y(γ). (3)

Using the commutativity of Diagram (2) and Equation (3), we see that commutativity of

Diagram (1) is equivalent to the equation

YH(γ) ◦ Y(α′) = Y(α) ◦ Y(γ).

Since γ is an Alg(H)-morphism, we have γ ◦ α = α′ ◦ H(γ). Applying Y to both sides then

yields the commutativity of Diagram (1). Therefore, Y(γ) is a Coalg(V)-morphism. It is

then straightforward to see that F is a contravariant functor.

Proposition 6.35. There is a contravariant functor G : Coalg(V)→ Alg(H).

Proof. Let (X, σ) ∈ Coalg(V). Then C(σ) : C(VX) → C(X) is a ba`-morphism. We set

G(X, σ) = (X,Gσ), where Gσ = C(σ) ◦ CV(εX) ◦ ηC(X).

HC(X) C(VYC(X)) C(VX) C(X)
ηC(X)

Gσ

CV(εX) C(σ)
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If ϕ : (X, σ)→ (X ′, σ′) is a Coalg(V)-morphism,

X V(X)

X ′ V(X ′)

σ

ϕ V(ϕ)

σ′

We define G(ϕ) = C(ϕ). We need to show that C(ϕ) is an Alg(H)-morphism.

HC(X ′) C(X ′)

HC(X) C(X)

Gσ′

HC(ϕ) C(ϕ)

Gσ

We have

C(ϕ) ◦ Gσ′ = C(ϕ) ◦ C(σ′) ◦ CV(εX′) ◦ ηC(X′)

= C(σ′ ◦ ϕ) ◦ CV(εX′) ◦ ηC(X′)

= C(V(ϕ) ◦ σ) ◦ CV(εX′) ◦ ηC(X′)

= C(V(εX′) ◦ V(ϕ) ◦ σ) ◦ ηC(X′)

= C(V(εX′ ◦ ϕ) ◦ σ) ◦ ηC(X′)

On the other hand,

Gσ ◦ HC(ϕ) = C(σ) ◦ CV(εX) ◦ ηC(X) ◦ HC(ϕ)

= C(σ) ◦ CV(εX) ◦ CVYC(ϕ) ◦ ηC(X′)

= C(σ) ◦ CV(YC(ϕ) ◦ εX) ◦ ηC(X′)

= C(σ) ◦ CV(εX′ ◦ ϕ) ◦ ηC(X′)

= C(V(εX′ ◦ ϕ) ◦ σ) ◦ ηC(X′)

where the second equality holds by applying Lemma 6.33 to γ = C(ϕ) and the fourth equality

by the naturality of ε. Thus, C(ϕ) ◦ Gσ′ = Gσ ◦HC(ϕ). It is then straightforward to see that

G is a contravariant functor.
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Proposition 6.36. There is a natural isomorphism ξ : 1Coalg(V) → FG.

Proof. We define ξ : 1Coalg(V) → FG as follows. If (X, σ) ∈ Coalg(V), then ξ(X,σ) = εX .

X V(X)

YC(X) V(YC(X))

σ

εX V(εX)

FGσ

(4)

To see that εX is a Coalg(V)-morphism, we have Gσ = C(σ) ◦ CV(εX) ◦ ηC(X). Therefore,

FGσ = ε−1V(YC(X))
◦ Y(ηC(X))

−1 ◦ Y(Gσ)

= ε−1V(YC(X))
◦ Y(ηC(X))

−1 ◦ Y(C(σ) ◦ CV(εX) ◦ ηC(X))

= ε−1V(YC(X))
◦ Y(ηC(X))

−1 ◦ Y(ηC(X)) ◦ YCV(εX) ◦ YC(σ)

= ε−1V(YC(X))
◦ YCV(εX) ◦ YC(σ)

= V(εX) ◦ ε−1V(X) ◦ YC(σ)

= V(εX) ◦ σ ◦ ε−1X

where the last two equalities hold since ε is a natural isomorphism. Composing both sides

on the right by εX shows that Diagram (4) commutes. Thus, εX is a Coalg(V)-morphism.

To see that ξ : 1Coalg(V) → FG is a natural transformation, let ϕ : (X, σ)→ (X ′, σ′) be a

Coalg(V)-morphism. The following diagram commutes since ε is a natural transformation.

X YC(X)

X ′ YC(X′)

εX

ϕ YC(ϕ)

εX′

Because ξ(X,σ) = εX and ξ(X′,σ′) = εX′ , it follows that ξ is natural. It is a natural isomorphism

since ξ(X,σ) = εX is a homeomorphism for each (X, σ) ∈ Coalg(V).

Remark 6.37. Since C and Y form a dual adjunction between ba` and KHaus, the natural

transformations ζ and ε satisfy Y(ζA) ◦ εYA = 1YA and C(εX) ◦ ζC(X) = 1C(X) for each
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A ∈ ba` and X ∈ KHaus by [87, Thm. IV.1.1]. Moreover, since ε is a natural isomorphism,

Y(ζA) = ε−1YA and ζC(X) = C(εX)−1.

Proposition 6.38. There is a natural transformation κ : 1Alg(H) → GF .

Proof. We define κ : 1Alg(H) → GF as follows. Let (A,α) ∈ Alg(H). We set κ(A,α) = ζA.

H(A) A

HC(YA) C(YA)

α

H(ζA) ζA

GFα

(5)

To see that ζA is an Alg(H)-morphism, we show that Diagram (5) is commutative. We have

Fα = ε−1V(YA) ◦ Y(ηA)−1 ◦ Y(α) and so

GFα = C(Fα) ◦ CV(εYA) ◦ ηC(YA)

= C(ε−1V(YA) ◦ Y(ηA)−1 ◦ Y(α)) ◦ CV(εYA) ◦ ηC(YA)

= CY(α) ◦ CY(ηA)−1 ◦ C(εV(YA))−1 ◦ CV(εYA) ◦ ηC(YA)

= CY(α) ◦ CY(ηA)−1 ◦ ζCV(YA) ◦ CV(εYA) ◦ ηC(YA)

= CY(α) ◦ CY(ηA)−1 ◦ ζCV(YA) ◦ CVY(ζA)−1 ◦ ηC(YA)

because C(εV(YA))−1 = ζCV(YA) and εYA = Y(ζA)−1 by Remark 6.37. Thus, by Lemma 6.33

and the naturality of ζ (used twice),

GFα ◦ H(ζA) = CY(α) ◦ CY(ηA)−1 ◦ ζCV(YA) ◦ CVY(ζA)−1 ◦ ηC(YA) ◦ H(ζA)

= CY(α) ◦ CY(ηA)−1 ◦ ζCV(YA) ◦ CVY(ζA)−1 ◦ CVY(ζA) ◦ ηA

= CY(α) ◦ CY(ηA)−1 ◦ ζCV(YA) ◦ ηA

= CY(α) ◦ ζH(A)

= ζA ◦ α.
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Thus, ζA ◦ α = GFα ◦ H(ζA), and hence ζA is a Coalg(V)-morphism.

To show naturality, let γ : (A,α) → (A′, α′) be an Alg(H)-morphism. The following

diagram commutes since ζ is a natural transformation.

A C(YA)

A′ C(YA′)

γ

ζA

CY(γ)

ζA′

Because κ(A,α) = ζA and κ(A′,α′) = ζA′ , it follows that κ is a natural transformation.

Theorem 6.39. The functors F and G yield a dual adjunction between Alg(H) and Coalg(V).

Proof. By [87, Thm. IV.1.2] and Propositions 6.34–6.38, it suffices to show that

F(κ(A,α)) ◦ ξF(A,α) = 1F(A,α)

and

G(ξ(X,σ)) ◦ κG(X,σ) = 1G(X,σ)

for each (A,α) ∈ Alg(H) and (X, σ) ∈ Coalg(V). We have κ(A,α) = ζA and ξF(A,α) =

εYA . Since F(κ(A,α)) = F(ζA) = Y(ζA) and 1F(A,α) = 1YA , the first equation reduces to

Y(ζA) ◦ εYA = 1YA , which holds by Remark 6.37. For the second equation, ξ(X,σ) = εX

and κG(X,σ) = ζC(X). Since G(ξ(X,σ)) = G(εX) = C(εX) and 1G(X,σ) = 1C(X), the equation

G(ξ(X,σ)) ◦ κG(X,σ) = 1G(X,σ) is equivalent to C(εX) ◦ ζC(X) = 1C(X), which also holds by

Remark 6.37. Therefore, F and G form a dual adjunction.

Definition 6.40. Let Algu(H) be the full subcategory of Alg(H) consisting of those (A,α)

with A ∈ uba`.
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Corollary 6.41.

1. The functors F and G restrict to a dual equivalence between Algu(H) and Coalg(V).

2. Algu(H) is a reflective subcategory of Alg(H).

Proof. (1) Let (A,α) ∈ Alg(H). Then κ(A,α) = ζA is an isomorphism iff A ∈ uba` iff (A,α) ∈

Algu(H). Consequently, κ : 1Algu(H) → GF is a natural isomorphism by Proposition 6.38.

Moreover, ξ is a natural isomorphism by Proposition 6.36. Therefore, F and G restrict to a

dual equivalence between Algu(H) and Coalg(V) by [87, Thm. IV.4.1].

(2) By (1), the functors F and G form a dual equivalence between Algu(H) and Coalg(V).

If (A,α) ∈ Alg(H), then the morphism κ(A,α) is a universal arrow from (A,α) to F by [87,

Thm. IV.1.1]. Therefore, Algu(H) is a reflective subcatgory of Alg(H) (see [87, p. 89]).

Proposition 6.42. The functorsM,N yield an isomorphism between Algu(H) and muba`.

Proof. If (A, σ) ∈ Algu(H), then A ∈ uba`, so M(A, σ) = (A,2σ) ∈ muba`. If (A,2) ∈

muba`, then A ∈ uba`, so N (A,2) = (A, σ2) ∈ Algu(H). Therefore, the proof of The-

orem 6.24 shows that M and N restrict to Algu(H) and muba`, respectively, to yield an

isomorphism.

We finish this section by giving an alternate view of the category Algu(H).

Definition 6.43. We let Hu be the endofunctor CYH on uba`. Therefore, if A ∈ uba`,

then Hu(A) = C(YH(A)) and if α : A→ A′ is a uba`-morphism, then Hu(α) = CYH(α).

By Proposition 5.4(2), if γ : A → B is a ba`-morphism with B ∈ uba`, then there is a
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unique ba`-morphism γu : C(YA)→ B with γu ◦ ζA = γ, where γu = ζ−1B ◦ CY(γ).

A C(YA)

B C(YB)

ζA

γ CY(γ)
γu

ζ−1
B

Proposition 6.44. There is an isomorphism of categories between Algu(H) and Alg(Hu).

Proof. We define A : Algu(H) → Alg(Hu) on objects by sending (A,α) to (A,αu). On

morphisms, if γ is an Alg(H)-morphism, then A(γ) = γ.

H(A) Hu(A) A

H(A′) Hu(A′) A′

ζH(A)

α

H(γ)

αu

Hu(γ) γ

ζH(A′)

α′

(α′)u

To see that γ is an Alg(Hu)-morphism, the left square of the diagram commutes by the

naturality of ζ. We have

(γ ◦ αu) ◦ ζH(A) = γ ◦ α = α′ ◦ H(γ) = (α′)u ◦ ζH(A′) ◦ H(γ) = (α′)u ◦ Hu(γ) ◦ ζH(A)

so γ ◦ αu = (α′)u ◦ Hu(γ) since ζH(A) is epic. This shows that γ is an Alg(Hu)-morphism. It

then follows that A is a covariant functor.

Going in the opposite direction, we define a functor B : Alg(Hu) → Algu(H) on objects

by sending (A,α) to (A,α ◦ ζH(A)). On morphisms we send a Alg(Hu)-morphism γ : A→ A′

to itself. It is clear that B is a covariant functor.

If (A,α) ∈ Algu(H), then A(A,α) = (A,αu), and so BA(A,α) = (A,αu ◦ ζH(A)) =

(A,α). Therefore, BA = 1Algu(H). If (A,α) ∈ Alg(Hu), then (A,α ◦ ζH(A)) ∈ Algu(H), and

(α ◦ ζH(A))
u = α. Therefore, AB = 1Alg(Hu). Thus, A,B yield an isomorphism of categories

between Algu(H) and Alg(Hu).
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6.6 mba` and KHF

In this section we show how to derive from our results the dual adjunction between mba`

and KHF and the dual equivalence between muba` and KHF obtained in Section 5.

We start by recalling (see, e.g., [15, Thm. 2.16]) that there is an isomorphism of categories

between Coalg(V) and KHF. The isomorphism is determined by the following functors. The

functor S : Coalg(V)→ KHF sends (X, σ) to (X,Rσ) ∈ KHF, where xRσy if y ∈ σ(x), and S

sends a Coalg(V) morphism to itself. The functor T : KHF→ Coalg(V) sends (X,R) ∈ KHF

to (X, σR), defined by σR(x) = R[x], and sends a KHF-morphism to itself.

As a consequence of this and the results of the previous section, we obtain an alternate

proof of Theorem 5.43.

Theorem 6.45. There is a dual adjunction between mba` and KHF which restricts to a

dual equivalence between muba` and KHF.

Proof. By Theorem 6.39 the functors F and G form a dual adjunction between Alg(H) and

Coalg(V). By Theorem 6.24, the functorsM,N yield an isomorphism of categories between

Alg(H) and mba`. The functors S, T yield an isomorphism of categories between Coalg(V)

and KHF [15, Thm. 2.16]. We thus have the following diagram.

muba` mba` Alg(H) Coalg(V) KHF
N F

M

S

G T

Consequently, SFN : mba` → KHF and MGT : KHF → mba` yield a dual adjunction

which restricts to a dual equivalence between muba` and KHF.

Proposition 6.46. SFN and MGT are precisely the functors C and Y yielding the dual

adjunction of Theorem 5.43.
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Proof. Let (A,2) ∈ mba`. Then Y(A,2) = (YA, R2), where we recall from Definition 5.23

that R2 is defined by xR2y if y+ ⊆ 2−1x. We have N (A,2) = (A, σ2), which satisfies

σ2(2a) = 2a for all a ∈ A. Then F(A, σ2) = (YA,Fσ2), where we recall that Fσ2 is the

composition ε−1V(YA) ◦ Y(ηA)−1 ◦ Y(σ2). Finally, S sends this to (YA, RFσ2 ), where xRFσ2y

if y ∈ Fσ2(x). Let x ∈ YA and F = Fσ2(x) ∈ V(YA). If M = εV(YA)(F ) ∈ YC(VYA), then

M = {g ∈ C(VYA) | g(F ) = 0} and

Y(ηA)(M) = η−1A (M) = σ−12 (x) = Y(σ2)(x).

We show that R2 = RFσ2 . Suppose that xR2y, so 2y+ ⊆ x. To see that xRFσ2y, we need

to show that y ∈ F . If not, then by Urysohn’s lemma and the fact that ζA[A] is uniformly

dense in C(YA), there is a ∈ A with ζA(a)(y) = 0 and ζA(a)[F ] ≥ 1/2. By replacing a by

a+ we may assume that a ≥ 0. Since ζA(a)(y) = 0, we have a ∈ y. Therefore, 2a ∈ x.

This means σ2(2a) ∈ x, so 2a ∈ σ−12 (x) = η−1A (M). Thus, ηA(2a) ∈ M , so gA(a) ∈ M .

Therefore, inf gA(ζA(a))(F ) = 0, which is false by construction of a. This shows y ∈ F .

Conversely, if xRFσ2y, then y ∈ F . Let a ∈ y+. Then inf gA(ζA(a))(F ) = 0 because a ∈ y

and a ≥ 0. Therefore, ηA(2a) ∈ M , so 2a ∈ η−1A (M) = σ−12 (x). Thus, 2a = σ2(2a) ∈ x.

This shows 2y+ ⊆ x, so xR2y, completing the proof that RFσ2 = R2. Therefore, Y and

SFN agree on the objects of mba`. For morphisms, if α : (A,2) → (A′,2′) is an mba`-

morphism, then SFN (α) = SF(α) = S(Y(α)) = Y(α). Thus, SFN = Y .

In the opposite direction, if (X,R) ∈ KHF, we show that C(X,R) =MGT (X,R). First,

C(X,R) = (C(X),2R), where we recall from Section 5.2 that 2Rf is given by

(2Rf)(x) =


inf fR[x] if R[x] 6= ∅

1 if R[x] = ∅.
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The functor T sends (X,R) to (X, σR), where σR(x) = R[x]. Then G sends this to

(C(X),GσR), where we recall that GσR = C(σR) ◦ CV(εX) ◦ ηC(X). Finally, (C(X),GσR)

is sent by M to (C(X),2GσR ), where 2GσRf = GσR(2f ). We have

GσR(2f ) = C(σR)(CV(εX)(ηC(X)(2f )))

= C(σR)(CV(εX)(gC(X)(f)))

= C(σR)(gC(X)(f) ◦ V(εX))

= gC(X)(f) ◦ V(εX) ◦ σR.

Let x ∈ X. Then σR(x) = R[x] and V(εX)(R[x]) = εX(R[x]). Therefore, since f =

ζC(X)(f) ◦ εX by Remark 6.37, we have

gC(X)(f)(εXR[x]) =


inf ζC(X)(f)(εXR[x]) if R[x] 6= ∅

1 if R[x] = ∅

=


inf fR[x] if R[x] 6= ∅

1 if R[x] = ∅

= (2Rf)(x).

Thus, C and MGT agree on objects of KHF. If σ : (X,R) → (X ′, R′) is a KHF-morphism,

then MGT (σ) =MC(σ) = C(σ). Consequently, MGT = C.

The following diagram shows the relationship between the various categories we have

considered in Part II, where the curved vertical arrows are reflections and the vertical hook-

arrows are full embeddings.
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mba` Alg(H)

muba` Algu(H) Alg(Hu)

KHF Coalg(V)

N

M

N

Y

A

M
F

FB

B

T

C

S

AGG

Remark 6.47. The Vietoris space of X is usually defined as the space of nonempty closed

subsets of X (see, e.g., [47, p. 120]). However, we follow [76, p. 111] in including ∅ in V(X).

This is necessary for our considerations since the continuous relation R on X may not be

serial, and hence there may be x ∈ X with R[x] = ∅. Therefore, ρR(x) = ∅, and we need

∅ ∈ V(X) for ρR to be well defined. It is straightforward to see that the category of compact

Hausdorff frames with a serial relation is isomorphic to the category Coalg(V∗) where V∗ is

the endofunctor on KHaus defined by V∗(X) = V(X) \ {∅}. In [20, Sec. 7] we prove there is

a dual adjunction between the category of compact Hausdorff frames with a serial relation

and the subcategory of mba` given by the algebras satisfying 20 = 0 that restricts to a

dual equivalence on the subcategory of the uniformly complete algebras. Such a result can

be obtained via an algebraic/coalgebraic approach analogous to the one presented in this

section. Indeed, in [21, Sec. 8] we show how to simplify the construction of H to obtain an

endofunctor H∗ on ba` dual to V∗ and we prove that there is a dual adjunction between

Coalg(V∗) and Alg(H∗) that restricts to a dual equivalence.

6.7 Connection to modal algebras and descriptive frames

In this section we connect our results with those of Abramsky [1] and Kupke, Kurz, and

Venema [84].
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Lemma 6.48. If A ∈ cuba`, then Hu(A) ∈ cuba`.

Proof. By [24, Prop. 5.20], if A ∈ cuba`, then YA is a Stone space. Therefore, V(YA) is a

Stone space, and hence YHu(A) is a Stone space by Theorem 6.30. Thus, Hu(A) ∈ cuba` by

[24, Prop. 5.20].

To distinguish between V on KHaus and Stone, we denote the Vietoris endofunctor on

Stone by VS. By Lemma 6.48, Hu restricts to an endofunctor on cuba`, which we denote

by Hc. The following result is then an immediate consequence of Corollary 6.41(1).

Theorem 6.49. There is a dual equivalence between Algu(Hc) and Coalg(VS).

We let HBA be the functor of [84] that sends B ∈ BA to the free boolean algebra over its

underlying meet-semilattice. It was shown in [84, Prop., 3.12] that Alg(HBA) is isomorphic to

the category MA of modal algebras. In parallel of M : Alg(H) → mba` and N : mba` →

Alg(H), we denote the functors giving the isomorphism by MBA : Alg(HBA) → MA and

N BA : MA → Alg(HBA). By Theorem 5.54, the triangle in the diagram below commutes

up to natural isomorphism, where (−)∗ : DF → MA and (−)∗ : MA → DF are the functors

yielding Jónsson-Tarski duality, and the functor Id sends (A,2) ∈ mba` to (Id(A),2|Id(A))

(see Lemma 5.50). Therefore, there is an equivalence of categories between Alg(Hc) and

Alg(HBA), where the functor Alg(Hc)→ Alg(HBA) is the composition N BA ◦ Id ◦M.

Alg(Hc) Alg(HBA)

mcuba` MA

DF

M

NBA◦Id ◦M

MBAN

Id

Y

NBA

(−)∗C

(−)∗
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The diagram displays the category DF at the bottom and four different categories dually

equivalent to it. Thus, it shows various ways to obtain Jónsson-Tarski duality and connects

them via the horizontal and vertical functors. The right-hand side contains the classical

version of Jónsson-Tarski duality and the algebra/coalgebra approach of [84]. The left-hand

side presents two new ways to obtain Jónsson-Tarski duality described in Section 5.5 and in

this section.

6.8 Open problems and future directions of research

We conclude by listing several open problems and possible future directions of research

pertaining to the second part of the thesis.

(1) As we pointed out in the Introduction, there are other dualities for KHaus. For

example, in pointfree topology we have Isbell duality [75] (see also [6] or [76, Sec. III.1]) and

de Vries duality [44] (see also [13]). The two are closely related, see [14]. Isbell and de Vries

dualities were generalized to the setting of KHF in [15]. It is natural to compare the results

of [15] to the ones obtained in this section.

(2) Another relevant duality was established by Kakutani [78, 79], the Krein brothers [80],

and Yosida [114], who also worked with continuous real-valued functions, but their signature

was that of a vector lattice instead of an `-algebra. Gelfand duality has a natural counterpart

in this setting. Let bav be the category of bounded archimedean vector lattices and let ubav

be its reflective subcategory consisting of uniformly complete objects. Then there is a dual

adjunction between bav and KHaus, which restricts to a dual equivalence between ubav

and KHaus. This duality is known as Yosida duality (or Kakutani-Krein-Yosida duality). In

our axiomatization of mba` (see Definition 5.16), the only axiom involving multiplication is
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(M5). In the serial case, (M5) simplifies to (M5′) of Remark 5.18, which only involves scalar

multiplication. In the non-serial case, (M5) can be replaced by the following two axioms

• 2(λa) = λ2a+ (1− λ)20 provided λ ≥ 0,

• 20 ∧ (1−2a)+ = 0,

which again only involve vector lattice operations. This yields the category mbav of modal

bounded archimedean vector lattices and its reflective subcategory mubav consisting of

uniformly complete objects. The results of Section 5.4 then generalize to the setting of

mbav and mubav , and provide a generalization of Yosida duality.

(3) Our definition of a modal operator on a bounded archimedean `-algebra can be further

adjusted to the settings of `-rings, `-groups, and MV-algebras. In this regard, it would be

interesting to develop logical systems corresponding to these algebras.

(4) The theory of canonical extensions originates from the work of Jónsson and Tarski [77]

on boolean algebras with operators. Canonical extensions of bounded archimedean `-algebras

were introduced in [27]. In [23] we provide a point-free construction of canonical extensions

in ba`. This we do by first adapting the choice-free construction of canonical extensions of

boolean algebras of [31] to a point-free construction that we then generalize to ba`.

(5) It is well known that the category of Kripke frames (see Section 5.2) is isomorphic

to Coalg(P) where P is the covariant powerset functor on the category of sets. In [19] we

define an endofunctor H on the category of complete and atomic boolean algebras such that

Coalg(P) is dually equivalent to Alg(H). As a consequence, we obtain that the category KF

of Kripke frames is dually equivalent to the category cama of complete and atomic modal

algebras with completely multiplicative 2. This yields an alternate proof of Thomason
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duality between KF and cama that is analogous to the alternate proof of Jónsson-Tarski

duality of [84]. The category Sets of sets is dually equivalent to the subcategory balg of ba`

given by the basic algebras (see [28, Sec. 3]). In a future work we will extend this duality to

a duality between KF and the subcategory mbalg of mba` given by the basic algebras with

a completely multiplicative modal operator. We will also show that such a duality can be

obtained via algebraic/coalgebraic methods by an approach similar to the one employed in

this section. Thus, we will obtain a diagram connecting the various approaches to Thomason

duality analogous to the one at the end of Section 6.7.
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